\(\int \frac {d+e x}{a+b x^2+c x^4} \, dx\) [237]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 189 \[ \int \frac {d+e x}{a+b x^2+c x^4} \, dx=\frac {\sqrt {2} \sqrt {c} d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c}} \] Output:

2^(1/2)*c^(1/2)*d*arctan(2^(1/2)*c^(1/2)*x/(b-(-4*a*c+b^2)^(1/2))^(1/2))/( 
-4*a*c+b^2)^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-2^(1/2)*c^(1/2)*d*arctan(2^ 
(1/2)*c^(1/2)*x/(b+(-4*a*c+b^2)^(1/2))^(1/2))/(-4*a*c+b^2)^(1/2)/(b+(-4*a* 
c+b^2)^(1/2))^(1/2)-e*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2) 
^(1/2)
 

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.03 \[ \int \frac {d+e x}{a+b x^2+c x^4} \, dx=\frac {\frac {2 \sqrt {2} \sqrt {c} d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}}}-\frac {2 \sqrt {2} \sqrt {c} d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b+\sqrt {b^2-4 a c}}}+e \left (\log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )-\log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )\right )}{2 \sqrt {b^2-4 a c}} \] Input:

Integrate[(d + e*x)/(a + b*x^2 + c*x^4),x]
 

Output:

((2*Sqrt[2]*Sqrt[c]*d*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c 
]]])/Sqrt[b - Sqrt[b^2 - 4*a*c]] - (2*Sqrt[2]*Sqrt[c]*d*ArcTan[(Sqrt[2]*Sq 
rt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/Sqrt[b + Sqrt[b^2 - 4*a*c]] + e*(Lo 
g[-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2] - Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2] 
))/(2*Sqrt[b^2 - 4*a*c])
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {2202, 27, 1406, 218, 1432, 1083, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x}{a+b x^2+c x^4} \, dx\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {d}{c x^4+b x^2+a}dx+\int \frac {e x}{c x^4+b x^2+a}dx\)

\(\Big \downarrow \) 27

\(\displaystyle d \int \frac {1}{c x^4+b x^2+a}dx+e \int \frac {x}{c x^4+b x^2+a}dx\)

\(\Big \downarrow \) 1406

\(\displaystyle d \left (\frac {c \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx}{\sqrt {b^2-4 a c}}-\frac {c \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{\sqrt {b^2-4 a c}}\right )+e \int \frac {x}{c x^4+b x^2+a}dx\)

\(\Big \downarrow \) 218

\(\displaystyle e \int \frac {x}{c x^4+b x^2+a}dx+d \left (\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {b^2-4 a c} \sqrt {\sqrt {b^2-4 a c}+b}}\right )\)

\(\Big \downarrow \) 1432

\(\displaystyle \frac {1}{2} e \int \frac {1}{c x^4+b x^2+a}dx^2+d \left (\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {b^2-4 a c} \sqrt {\sqrt {b^2-4 a c}+b}}\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle d \left (\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {b^2-4 a c} \sqrt {\sqrt {b^2-4 a c}+b}}\right )-e \int \frac {1}{-x^4+b^2-4 a c}d\left (2 c x^2+b\right )\)

\(\Big \downarrow \) 219

\(\displaystyle d \left (\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {b^2-4 a c} \sqrt {\sqrt {b^2-4 a c}+b}}\right )-\frac {e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c}}\)

Input:

Int[(d + e*x)/(a + b*x^2 + c*x^4),x]
 

Output:

d*((Sqrt[2]*Sqrt[c]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]] 
])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[2]*Sqrt[c]*ArcT 
an[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sq 
rt[b + Sqrt[b^2 - 4*a*c]])) - (e*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]]) 
/Sqrt[b^2 - 4*a*c]
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1406
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^ 
2 - 4*a*c, 2]}, Simp[c/q   Int[1/(b/2 - q/2 + c*x^2), x], x] - Simp[c/q   I 
nt[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c 
, 0] && PosQ[b^2 - 4*a*c]
 

rule 1432
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 
 Subst[Int[(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.08 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.23

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\textit {\_R} e +d \right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +b \textit {\_R}}\right )}{2}\) \(43\)
default \(4 c \left (-\frac {\sqrt {-4 a c +b^{2}}\, \left (\frac {e \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )}{4 c}-\frac {d \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 a c -2 b^{2}}+\frac {\sqrt {-4 a c +b^{2}}\, \left (\frac {e \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )}{4 c}+\frac {d \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 a c -2 b^{2}}\right )\) \(200\)

Input:

int((e*x+d)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)
 

Output:

1/2*sum((_R*e+d)/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.89 (sec) , antiderivative size = 398481, normalized size of antiderivative = 2108.37 \[ \int \frac {d+e x}{a+b x^2+c x^4} \, dx=\text {Too large to display} \] Input:

integrate((e*x+d)/(c*x^4+b*x^2+a),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x}{a+b x^2+c x^4} \, dx=\text {Timed out} \] Input:

integrate((e*x+d)/(c*x**4+b*x**2+a),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {d+e x}{a+b x^2+c x^4} \, dx=\int { \frac {e x + d}{c x^{4} + b x^{2} + a} \,d x } \] Input:

integrate((e*x+d)/(c*x^4+b*x^2+a),x, algorithm="maxima")
 

Output:

integrate((e*x + d)/(c*x^4 + b*x^2 + a), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1342 vs. \(2 (149) = 298\).

Time = 0.79 (sec) , antiderivative size = 1342, normalized size of antiderivative = 7.10 \[ \int \frac {d+e x}{a+b x^2+c x^4} \, dx=\text {Too large to display} \] Input:

integrate((e*x+d)/(c*x^4+b*x^2+a),x, algorithm="giac")
 

Output:

1/4*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4 - 8*sqrt(2)*sqrt(b*c + sq 
rt(b^2 - 4*a*c)*c)*a*b^2*c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 
*c - 2*b^4*c + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^2 + 8*sqrt 
(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 
- 4*a*c)*c)*b^2*c^2 + 16*a*b^2*c^2 + 2*b^3*c^2 - 4*sqrt(2)*sqrt(b*c + sqrt 
(b^2 - 4*a*c)*c)*a*c^3 - 32*a^2*c^3 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c 
)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b 
*c + sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + s 
qrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 
- 4*a*c)*c)*b*c^2 + 2*(b^2 - 4*a*c)*b^2*c - 8*(b^2 - 4*a*c)*a*c^2 - 2*(b^2 
 - 4*a*c)*b*c^2)*d*arctan(2*sqrt(1/2)*x/sqrt((b + sqrt(b^2 - 4*a*c))/c))/( 
(a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 
4*a^2*c^3)*abs(c)) + 1/4*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4 - 8* 
sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c - 2*sqrt(2)*sqrt(b*c - sqr 
t(b^2 - 4*a*c)*c)*b^3*c + 2*b^4*c + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c 
)*c)*a^2*c^2 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + sqrt(2) 
*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c^2 - 16*a*b^2*c^2 + 2*b^3*c^2 - 4*sq 
rt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*c^3 + 32*a^2*c^3 - 8*a*b*c^3 - sqr 
t(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqr 
t(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b...
 

Mupad [B] (verification not implemented)

Time = 22.00 (sec) , antiderivative size = 1308, normalized size of antiderivative = 6.92 \[ \int \frac {d+e x}{a+b x^2+c x^4} \, dx =\text {Too large to display} \] Input:

int((d + e*x)/(a + b*x^2 + c*x^4),x)
 

Output:

symsum(log(c^2*(d*e^2 + e^3*x + 4*root(128*a^2*b^2*c*z^4 - 256*a^3*c^2*z^4 
 - 16*a*b^4*z^4 + 16*a*b*c*d^2*z^2 - 32*a^2*c*e^2*z^2 + 8*a*b^2*e^2*z^2 - 
4*b^3*d^2*z^2 + 16*a*c*d^2*e*z - 4*b^2*d^2*e*z - b*d^2*e^2 - c*d^4 - a*e^4 
, z, k)^2*b^2*d - 8*root(128*a^2*b^2*c*z^4 - 256*a^3*c^2*z^4 - 16*a*b^4*z^ 
4 + 16*a*b*c*d^2*z^2 - 32*a^2*c*e^2*z^2 + 8*a*b^2*e^2*z^2 - 4*b^3*d^2*z^2 
+ 16*a*c*d^2*e*z - 4*b^2*d^2*e*z - b*d^2*e^2 - c*d^4 - a*e^4, z, k)^3*b^3* 
x - 16*root(128*a^2*b^2*c*z^4 - 256*a^3*c^2*z^4 - 16*a*b^4*z^4 + 16*a*b*c* 
d^2*z^2 - 32*a^2*c*e^2*z^2 + 8*a*b^2*e^2*z^2 - 4*b^3*d^2*z^2 + 16*a*c*d^2* 
e*z - 4*b^2*d^2*e*z - b*d^2*e^2 - c*d^4 - a*e^4, z, k)^2*a*c*d + 2*root(12 
8*a^2*b^2*c*z^4 - 256*a^3*c^2*z^4 - 16*a*b^4*z^4 + 16*a*b*c*d^2*z^2 - 32*a 
^2*c*e^2*z^2 + 8*a*b^2*e^2*z^2 - 4*b^3*d^2*z^2 + 16*a*c*d^2*e*z - 4*b^2*d^ 
2*e*z - b*d^2*e^2 - c*d^4 - a*e^4, z, k)*b*e^2*x - 4*root(128*a^2*b^2*c*z^ 
4 - 256*a^3*c^2*z^4 - 16*a*b^4*z^4 + 16*a*b*c*d^2*z^2 - 32*a^2*c*e^2*z^2 + 
 8*a*b^2*e^2*z^2 - 4*b^3*d^2*z^2 + 16*a*c*d^2*e*z - 4*b^2*d^2*e*z - b*d^2* 
e^2 - c*d^4 - a*e^4, z, k)*c*d^2*x - 4*root(128*a^2*b^2*c*z^4 - 256*a^3*c^ 
2*z^4 - 16*a*b^4*z^4 + 16*a*b*c*d^2*z^2 - 32*a^2*c*e^2*z^2 + 8*a*b^2*e^2*z 
^2 - 4*b^3*d^2*z^2 + 16*a*c*d^2*e*z - 4*b^2*d^2*e*z - b*d^2*e^2 - c*d^4 - 
a*e^4, z, k)^2*b^2*e*x + 4*root(128*a^2*b^2*c*z^4 - 256*a^3*c^2*z^4 - 16*a 
*b^4*z^4 + 16*a*b*c*d^2*z^2 - 32*a^2*c*e^2*z^2 + 8*a*b^2*e^2*z^2 - 4*b^3*d 
^2*z^2 + 16*a*c*d^2*e*z - 4*b^2*d^2*e*z - b*d^2*e^2 - c*d^4 - a*e^4, z,...
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 467, normalized size of antiderivative = 2.47 \[ \int \frac {d+e x}{a+b x^2+c x^4} \, dx=\frac {-4 \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}-2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) a e +2 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}-2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) b d -4 \sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}-2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) a d -4 \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}+2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) a e -2 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}+2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) b d +4 \sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}+2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) a d -\sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) b d +\sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathrm {log}\left (\sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) b d -2 \sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) a d +2 \sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathrm {log}\left (\sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) a d}{4 a \left (4 a c -b^{2}\right )} \] Input:

int((e*x+d)/(c*x^4+b*x^2+a),x)
 

Output:

( - 4*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2 
*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*e + 2* 
sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2* 
sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b*d - 4*sqrt(c)*sqrt(2*sqrt(c)*sqr 
t(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)* 
sqrt(a) + b))*a*d - 4*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - 
 b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a 
) + b))*a*e - 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*s 
qrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b*d + 4*sqrt(c)*sq 
rt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x) 
/sqrt(2*sqrt(c)*sqrt(a) + b))*a*d - sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - b)*lo 
g( - sqrt(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a) + sqrt(c)*x**2)*b*d + sqrt(a) 
*sqrt(2*sqrt(c)*sqrt(a) - b)*log(sqrt(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a) + 
 sqrt(c)*x**2)*b*d - 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) - b)*log( - sqrt(2*s 
qrt(c)*sqrt(a) - b)*x + sqrt(a) + sqrt(c)*x**2)*a*d + 2*sqrt(c)*sqrt(2*sqr 
t(c)*sqrt(a) - b)*log(sqrt(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a) + sqrt(c)*x* 
*2)*a*d)/(4*a*(4*a*c - b**2))