\(\int \frac {x^2}{27 a^3+27 a^2 b x^2+27 a^2 c x^3+9 a b^2 x^4+b^3 x^6} \, dx\) [10]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 46, antiderivative size = 334 \[ \int \frac {x^2}{27 a^3+27 a^2 b x^2+27 a^2 c x^3+9 a b^2 x^4+b^3 x^6} \, dx=\frac {2 (-1)^{2/3} \arctan \left (\frac {3 \sqrt [3]{-1} a^{2/3} \sqrt [3]{c}-2 b x}{\sqrt {3} \sqrt {a} \sqrt {4 b-3 (-1)^{2/3} \sqrt [3]{a} c^{2/3}}}\right )}{9 \sqrt {3} \left (1+\sqrt [3]{-1}\right )^2 a^{11/6} \sqrt {4 b-3 (-1)^{2/3} \sqrt [3]{a} c^{2/3}} c^{2/3}}+\frac {2 \arctan \left (\frac {3 a^{2/3} \sqrt [3]{c}+2 b x}{\sqrt {3} \sqrt {a} \sqrt {4 b-3 \sqrt [3]{a} c^{2/3}}}\right )}{27 \sqrt {3} a^{11/6} \sqrt {4 b-3 \sqrt [3]{a} c^{2/3}} c^{2/3}}+\frac {2 (-1)^{2/3} \arctan \left (\frac {3 (-1)^{2/3} a^{2/3} \sqrt [3]{c}+2 b x}{\sqrt {3} \sqrt {a} \sqrt {4 b+3 \sqrt [3]{-1} \sqrt [3]{a} c^{2/3}}}\right )}{9 \sqrt {3} \left (1-\sqrt [3]{-1}\right ) \left (1+\sqrt [3]{-1}\right )^2 a^{11/6} \sqrt {4 b+3 \sqrt [3]{-1} \sqrt [3]{a} c^{2/3}} c^{2/3}} \] Output:

2/27*(-1)^(2/3)*arctan(1/3*(3*(-1)^(1/3)*a^(2/3)*c^(1/3)-2*b*x)*3^(1/2)/a^ 
(1/2)/(4*b-3*(-1)^(2/3)*a^(1/3)*c^(2/3))^(1/2))*3^(1/2)/(1+(-1)^(1/3))^2/a 
^(11/6)/(4*b-3*(-1)^(2/3)*a^(1/3)*c^(2/3))^(1/2)/c^(2/3)+2/81*arctan(1/3*( 
3*a^(2/3)*c^(1/3)+2*b*x)*3^(1/2)/a^(1/2)/(4*b-3*a^(1/3)*c^(2/3))^(1/2))*3^ 
(1/2)/a^(11/6)/(4*b-3*a^(1/3)*c^(2/3))^(1/2)/c^(2/3)+2/27*(-1)^(2/3)*arcta 
n(1/3*(3*(-1)^(2/3)*a^(2/3)*c^(1/3)+2*b*x)*3^(1/2)/a^(1/2)/(4*b+3*(-1)^(1/ 
3)*a^(1/3)*c^(2/3))^(1/2))*3^(1/2)/(1-(-1)^(1/3))/(1+(-1)^(1/3))^2/a^(11/6 
)/(4*b+3*(-1)^(1/3)*a^(1/3)*c^(2/3))^(1/2)/c^(2/3)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.05 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.29 \[ \int \frac {x^2}{27 a^3+27 a^2 b x^2+27 a^2 c x^3+9 a b^2 x^4+b^3 x^6} \, dx=\frac {1}{3} \text {RootSum}\left [27 a^3+27 a^2 b \text {$\#$1}^2+27 a^2 c \text {$\#$1}^3+9 a b^2 \text {$\#$1}^4+b^3 \text {$\#$1}^6\&,\frac {\log (x-\text {$\#$1}) \text {$\#$1}}{18 a^2 b+27 a^2 c \text {$\#$1}+12 a b^2 \text {$\#$1}^2+2 b^3 \text {$\#$1}^4}\&\right ] \] Input:

Integrate[x^2/(27*a^3 + 27*a^2*b*x^2 + 27*a^2*c*x^3 + 9*a*b^2*x^4 + b^3*x^ 
6),x]
 

Output:

RootSum[27*a^3 + 27*a^2*b*#1^2 + 27*a^2*c*#1^3 + 9*a*b^2*#1^4 + b^3*#1^6 & 
 , (Log[x - #1]*#1)/(18*a^2*b + 27*a^2*c*#1 + 12*a*b^2*#1^2 + 2*b^3*#1^4) 
& ]/3
 

Rubi [A] (verified)

Time = 1.00 (sec) , antiderivative size = 319, normalized size of antiderivative = 0.96, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {2466, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{27 a^3+27 a^2 b x^2+27 a^2 c x^3+9 a b^2 x^4+b^3 x^6} \, dx\)

\(\Big \downarrow \) 2466

\(\displaystyle 19683 a^6 \int \left (\frac {1}{531441 a^{22/3} \left (b x^2+3 a^{2/3} \sqrt [3]{c} x+3 a\right ) c^{2/3}}-\frac {(-1)^{2/3}}{177147 \left (1+\sqrt [3]{-1}\right )^2 a^{22/3} \left (b x^2-3 \sqrt [3]{-1} a^{2/3} \sqrt [3]{c} x+3 a\right ) c^{2/3}}+\frac {(-1)^{2/3}}{531441 a^{22/3} \left (b x^2+3 (-1)^{2/3} a^{2/3} \sqrt [3]{c} x+3 a\right ) c^{2/3}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 19683 a^6 \left (\frac {2 (-1)^{2/3} \arctan \left (\frac {3 \sqrt [3]{-1} a^{2/3} \sqrt [3]{c}-2 b x}{\sqrt {3} \sqrt {a} \sqrt {4 b-3 (-1)^{2/3} \sqrt [3]{a} c^{2/3}}}\right )}{177147 \sqrt {3} \left (1+\sqrt [3]{-1}\right )^2 a^{47/6} c^{2/3} \sqrt {4 b-3 (-1)^{2/3} \sqrt [3]{a} c^{2/3}}}+\frac {2 \arctan \left (\frac {3 a^{2/3} \sqrt [3]{c}+2 b x}{\sqrt {3} \sqrt {a} \sqrt {4 b-3 \sqrt [3]{a} c^{2/3}}}\right )}{531441 \sqrt {3} a^{47/6} c^{2/3} \sqrt {4 b-3 \sqrt [3]{a} c^{2/3}}}+\frac {2 (-1)^{2/3} \arctan \left (\frac {3 (-1)^{2/3} a^{2/3} \sqrt [3]{c}+2 b x}{\sqrt {3} \sqrt {a} \sqrt {3 \sqrt [3]{-1} \sqrt [3]{a} c^{2/3}+4 b}}\right )}{531441 \sqrt {3} a^{47/6} c^{2/3} \sqrt {3 \sqrt [3]{-1} \sqrt [3]{a} c^{2/3}+4 b}}\right )\)

Input:

Int[x^2/(27*a^3 + 27*a^2*b*x^2 + 27*a^2*c*x^3 + 9*a*b^2*x^4 + b^3*x^6),x]
 

Output:

19683*a^6*((2*(-1)^(2/3)*ArcTan[(3*(-1)^(1/3)*a^(2/3)*c^(1/3) - 2*b*x)/(Sq 
rt[3]*Sqrt[a]*Sqrt[4*b - 3*(-1)^(2/3)*a^(1/3)*c^(2/3)])])/(177147*Sqrt[3]* 
(1 + (-1)^(1/3))^2*a^(47/6)*Sqrt[4*b - 3*(-1)^(2/3)*a^(1/3)*c^(2/3)]*c^(2/ 
3)) + (2*ArcTan[(3*a^(2/3)*c^(1/3) + 2*b*x)/(Sqrt[3]*Sqrt[a]*Sqrt[4*b - 3* 
a^(1/3)*c^(2/3)])])/(531441*Sqrt[3]*a^(47/6)*Sqrt[4*b - 3*a^(1/3)*c^(2/3)] 
*c^(2/3)) + (2*(-1)^(2/3)*ArcTan[(3*(-1)^(2/3)*a^(2/3)*c^(1/3) + 2*b*x)/(S 
qrt[3]*Sqrt[a]*Sqrt[4*b + 3*(-1)^(1/3)*a^(1/3)*c^(2/3)])])/(531441*Sqrt[3] 
*a^(47/6)*Sqrt[4*b + 3*(-1)^(1/3)*a^(1/3)*c^(2/3)]*c^(2/3)))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2466
Int[(u_.)*(Q6_)^(p_), x_Symbol] :> With[{a = Coeff[Q6, x, 0], b = Coeff[Q6, 
 x, 2], c = Coeff[Q6, x, 3], d = Coeff[Q6, x, 4], e = Coeff[Q6, x, 6]}, Sim 
p[1/(3^(3*p)*a^(2*p))   Int[ExpandIntegrand[u*(3*a + 3*Rt[a, 3]^2*Rt[c, 3]* 
x + b*x^2)^p*(3*a - 3*(-1)^(1/3)*Rt[a, 3]^2*Rt[c, 3]*x + b*x^2)^p*(3*a + 3* 
(-1)^(2/3)*Rt[a, 3]^2*Rt[c, 3]*x + b*x^2)^p, x], x], x] /; EqQ[b^2 - 3*a*d, 
 0] && EqQ[b^3 - 27*a^2*e, 0]] /; ILtQ[p, 0] && PolyQ[Q6, x, 6] && EqQ[Coef 
f[Q6, x, 1], 0] && EqQ[Coeff[Q6, x, 5], 0] && RationalFunctionQ[u, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.06 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.28

method result size
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (b^{3} \textit {\_Z}^{6}+9 b^{2} a \,\textit {\_Z}^{4}+27 a^{2} c \,\textit {\_Z}^{3}+27 b \,a^{2} \textit {\_Z}^{2}+27 a^{3}\right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{5} b^{3}+12 \textit {\_R}^{3} a \,b^{2}+27 \textit {\_R}^{2} a^{2} c +18 a^{2} b \textit {\_R}}\right )}{3}\) \(93\)
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (b^{3} \textit {\_Z}^{6}+9 b^{2} a \,\textit {\_Z}^{4}+27 a^{2} c \,\textit {\_Z}^{3}+27 b \,a^{2} \textit {\_Z}^{2}+27 a^{3}\right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{5} b^{3}+12 \textit {\_R}^{3} a \,b^{2}+27 \textit {\_R}^{2} a^{2} c +18 a^{2} b \textit {\_R}}\right )}{3}\) \(93\)

Input:

int(x^2/(b^3*x^6+9*a*b^2*x^4+27*a^2*c*x^3+27*a^2*b*x^2+27*a^3),x,method=_R 
ETURNVERBOSE)
 

Output:

1/3*sum(_R^2/(2*_R^5*b^3+12*_R^3*a*b^2+27*_R^2*a^2*c+18*_R*a^2*b)*ln(x-_R) 
,_R=RootOf(_Z^6*b^3+9*_Z^4*a*b^2+27*_Z^3*a^2*c+27*_Z^2*a^2*b+27*a^3))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.48 (sec) , antiderivative size = 27094, normalized size of antiderivative = 81.12 \[ \int \frac {x^2}{27 a^3+27 a^2 b x^2+27 a^2 c x^3+9 a b^2 x^4+b^3 x^6} \, dx=\text {Too large to display} \] Input:

integrate(x^2/(b^3*x^6+9*a*b^2*x^4+27*a^2*c*x^3+27*a^2*b*x^2+27*a^3),x, al 
gorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^2}{27 a^3+27 a^2 b x^2+27 a^2 c x^3+9 a b^2 x^4+b^3 x^6} \, dx=\text {Timed out} \] Input:

integrate(x**2/(b**3*x**6+9*a*b**2*x**4+27*a**2*c*x**3+27*a**2*b*x**2+27*a 
**3),x)
                                                                                    
                                                                                    
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^2}{27 a^3+27 a^2 b x^2+27 a^2 c x^3+9 a b^2 x^4+b^3 x^6} \, dx=\int { \frac {x^{2}}{b^{3} x^{6} + 9 \, a b^{2} x^{4} + 27 \, a^{2} c x^{3} + 27 \, a^{2} b x^{2} + 27 \, a^{3}} \,d x } \] Input:

integrate(x^2/(b^3*x^6+9*a*b^2*x^4+27*a^2*c*x^3+27*a^2*b*x^2+27*a^3),x, al 
gorithm="maxima")
 

Output:

integrate(x^2/(b^3*x^6 + 9*a*b^2*x^4 + 27*a^2*c*x^3 + 27*a^2*b*x^2 + 27*a^ 
3), x)
 

Giac [F]

\[ \int \frac {x^2}{27 a^3+27 a^2 b x^2+27 a^2 c x^3+9 a b^2 x^4+b^3 x^6} \, dx=\int { \frac {x^{2}}{b^{3} x^{6} + 9 \, a b^{2} x^{4} + 27 \, a^{2} c x^{3} + 27 \, a^{2} b x^{2} + 27 \, a^{3}} \,d x } \] Input:

integrate(x^2/(b^3*x^6+9*a*b^2*x^4+27*a^2*c*x^3+27*a^2*b*x^2+27*a^3),x, al 
gorithm="giac")
 

Output:

integrate(x^2/(b^3*x^6 + 9*a*b^2*x^4 + 27*a^2*c*x^3 + 27*a^2*b*x^2 + 27*a^ 
3), x)
 

Mupad [B] (verification not implemented)

Time = 23.01 (sec) , antiderivative size = 825, normalized size of antiderivative = 2.47 \[ \int \frac {x^2}{27 a^3+27 a^2 b x^2+27 a^2 c x^3+9 a b^2 x^4+b^3 x^6} \, dx =\text {Too large to display} \] Input:

int(x^2/(27*a^3 + b^3*x^6 + 27*a^2*b*x^2 + 9*a*b^2*x^4 + 27*a^2*c*x^3),x)
 

Output:

symsum(log(-27*a^3*b^9*(43046721*root(669462604992*a^11*b^3*c^4*z^6 - 2824 
29536481*a^12*c^6*z^6 + 129140163*a^8*c^4*z^4 - 19683*a^4*c^2*z^2 + 1, z, 
k)^4*a^8*c^4 - 1062882*root(669462604992*a^11*b^3*c^4*z^6 - 282429536481*a 
^12*c^6*z^6 + 129140163*a^8*c^4*z^4 - 19683*a^4*c^2*z^2 + 1, z, k)^3*a^6*c 
^3 - 13122*root(669462604992*a^11*b^3*c^4*z^6 - 282429536481*a^12*c^6*z^6 
+ 129140163*a^8*c^4*z^4 - 19683*a^4*c^2*z^2 + 1, z, k)^2*a^4*c^2 + 3486784 
401*root(669462604992*a^11*b^3*c^4*z^6 - 282429536481*a^12*c^6*z^6 + 12914 
0163*a^8*c^4*z^4 - 19683*a^4*c^2*z^2 + 1, z, k)^5*a^10*c^5 + 81*root(66946 
2604992*a^11*b^3*c^4*z^6 - 282429536481*a^12*c^6*z^6 + 129140163*a^8*c^4*z 
^4 - 19683*a^4*c^2*z^2 + 1, z, k)*a^2*c + 18*root(669462604992*a^11*b^3*c^ 
4*z^6 - 282429536481*a^12*c^6*z^6 + 129140163*a^8*c^4*z^4 - 19683*a^4*c^2* 
z^2 + 1, z, k)*a*b^2*x - 25509168*root(669462604992*a^11*b^3*c^4*z^6 - 282 
429536481*a^12*c^6*z^6 + 129140163*a^8*c^4*z^4 - 19683*a^4*c^2*z^2 + 1, z, 
 k)^4*a^7*b^3*c^2 - 6198727824*root(669462604992*a^11*b^3*c^4*z^6 - 282429 
536481*a^12*c^6*z^6 + 129140163*a^8*c^4*z^4 - 19683*a^4*c^2*z^2 + 1, z, k) 
^5*a^9*b^3*c^3 + 5832*root(669462604992*a^11*b^3*c^4*z^6 - 282429536481*a^ 
12*c^6*z^6 + 129140163*a^8*c^4*z^4 - 19683*a^4*c^2*z^2 + 1, z, k)^2*a^3*b^ 
2*c*x + 708588*root(669462604992*a^11*b^3*c^4*z^6 - 282429536481*a^12*c^6* 
z^6 + 129140163*a^8*c^4*z^4 - 19683*a^4*c^2*z^2 + 1, z, k)^3*a^5*b^2*c^2*x 
 + 38263752*root(669462604992*a^11*b^3*c^4*z^6 - 282429536481*a^12*c^6*...
 

Reduce [F]

\[ \int \frac {x^2}{27 a^3+27 a^2 b x^2+27 a^2 c x^3+9 a b^2 x^4+b^3 x^6} \, dx=\int \frac {x^{2}}{b^{3} x^{6}+9 a \,b^{2} x^{4}+27 a^{2} c \,x^{3}+27 a^{2} b \,x^{2}+27 a^{3}}d x \] Input:

int(x^2/(b^3*x^6+9*a*b^2*x^4+27*a^2*c*x^3+27*a^2*b*x^2+27*a^3),x)
 

Output:

int(x**2/(27*a**3 + 27*a**2*b*x**2 + 27*a**2*c*x**3 + 9*a*b**2*x**4 + b**3 
*x**6),x)