\(\int \frac {d+e x}{(a+b x^2+c x^4)^{3/2}} \, dx\) [268]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 394 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=-\frac {e \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}+\frac {d x \left (b^2-2 a c+b c x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {b \sqrt {c} d x \sqrt {a+b x^2+c x^4}}{a \left (b^2-4 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {b \sqrt [4]{c} d \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{a^{3/4} \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt [4]{c} d \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 a^{3/4} \left (b-2 \sqrt {a} \sqrt {c}\right ) \sqrt {a+b x^2+c x^4}} \] Output:

-e*(2*c*x^2+b)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)+d*x*(b*c*x^2-2*a*c+b^2)/ 
a/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)-b*c^(1/2)*d*x*(c*x^4+b*x^2+a)^(1/2)/a 
/(-4*a*c+b^2)/(a^(1/2)+c^(1/2)*x^2)+b*c^(1/4)*d*(a^(1/2)+c^(1/2)*x^2)*((c* 
x^4+b*x^2+a)/(a^(1/2)+c^(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2*arctan(c^(1/4) 
*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))/a^(3/4)/(-4*a*c+b^2)/(c*x^4+ 
b*x^2+a)^(1/2)-1/2*c^(1/4)*d*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+b*x^2+a)/(a^(1/ 
2)+c^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(c^(1/4)*x/a^(1/4)),1/2*( 
2-b/a^(1/2)/c^(1/2))^(1/2))/a^(3/4)/(b-2*a^(1/2)*c^(1/2))/(c*x^4+b*x^2+a)^ 
(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 11.17 (sec) , antiderivative size = 470, normalized size of antiderivative = 1.19 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=-\frac {4 \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \left (a b e+2 a c x (d+e x)-b d x \left (b+c x^2\right )\right )+i b \left (-b+\sqrt {b^2-4 a c}\right ) d \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-i \left (-b^2+4 a c+b \sqrt {b^2-4 a c}\right ) d \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{4 a \left (b^2-4 a c\right ) \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \sqrt {a+b x^2+c x^4}} \] Input:

Integrate[(d + e*x)/(a + b*x^2 + c*x^4)^(3/2),x]
 

Output:

-1/4*(4*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*(a*b*e + 2*a*c*x*(d + e*x) - b*d*x 
*(b + c*x^2)) + I*b*(-b + Sqrt[b^2 - 4*a*c])*d*Sqrt[(b + Sqrt[b^2 - 4*a*c] 
 + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c 
*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqr 
t[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])] - I* 
(-b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])*d*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x 
^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b 
 - Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 
4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])])/(a*(b^2 - 4 
*a*c)*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[a + b*x^2 + c*x^4])
 

Rubi [A] (verified)

Time = 0.87 (sec) , antiderivative size = 388, normalized size of antiderivative = 0.98, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {2202, 27, 1405, 27, 1432, 1088, 1511, 27, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {d}{\left (c x^4+b x^2+a\right )^{3/2}}dx+\int \frac {e x}{\left (c x^4+b x^2+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle d \int \frac {1}{\left (c x^4+b x^2+a\right )^{3/2}}dx+e \int \frac {x}{\left (c x^4+b x^2+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 1405

\(\displaystyle d \left (\frac {x \left (-2 a c+b^2+b c x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\int \frac {c \left (b x^2+2 a\right )}{\sqrt {c x^4+b x^2+a}}dx}{a \left (b^2-4 a c\right )}\right )+e \int \frac {x}{\left (c x^4+b x^2+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle d \left (\frac {x \left (-2 a c+b^2+b c x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {c \int \frac {b x^2+2 a}{\sqrt {c x^4+b x^2+a}}dx}{a \left (b^2-4 a c\right )}\right )+e \int \frac {x}{\left (c x^4+b x^2+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 1432

\(\displaystyle d \left (\frac {x \left (-2 a c+b^2+b c x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {c \int \frac {b x^2+2 a}{\sqrt {c x^4+b x^2+a}}dx}{a \left (b^2-4 a c\right )}\right )+\frac {1}{2} e \int \frac {1}{\left (c x^4+b x^2+a\right )^{3/2}}dx^2\)

\(\Big \downarrow \) 1088

\(\displaystyle d \left (\frac {x \left (-2 a c+b^2+b c x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {c \int \frac {b x^2+2 a}{\sqrt {c x^4+b x^2+a}}dx}{a \left (b^2-4 a c\right )}\right )-\frac {e \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\)

\(\Big \downarrow \) 1511

\(\displaystyle d \left (\frac {x \left (-2 a c+b^2+b c x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {c \left (\sqrt {a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx-\frac {\sqrt {a} b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {a} \sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}\right )}{a \left (b^2-4 a c\right )}\right )-\frac {e \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle d \left (\frac {x \left (-2 a c+b^2+b c x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {c \left (\sqrt {a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx-\frac {b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}\right )}{a \left (b^2-4 a c\right )}\right )-\frac {e \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\)

\(\Big \downarrow \) 1416

\(\displaystyle d \left (\frac {x \left (-2 a c+b^2+b c x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {c \left (\frac {\sqrt [4]{a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}\right )}{a \left (b^2-4 a c\right )}\right )-\frac {e \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\)

\(\Big \downarrow \) 1509

\(\displaystyle d \left (\frac {x \left (-2 a c+b^2+b c x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {c \left (\frac {\sqrt [4]{a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {b \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{\sqrt {c}}\right )}{a \left (b^2-4 a c\right )}\right )-\frac {e \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\)

Input:

Int[(d + e*x)/(a + b*x^2 + c*x^4)^(3/2),x]
 

Output:

-((e*(b + 2*c*x^2))/((b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4])) + d*((x*(b^2 
- 2*a*c + b*c*x^2))/(a*(b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - (c*(-((b*( 
-((x*Sqrt[a + b*x^2 + c*x^4])/(Sqrt[a] + Sqrt[c]*x^2)) + (a^(1/4)*(Sqrt[a] 
 + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*Ellipt 
icE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(c^(1/4)* 
Sqrt[a + b*x^2 + c*x^4])))/Sqrt[c]) + (a^(1/4)*(2*Sqrt[a] + b/Sqrt[c])*(Sq 
rt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*E 
llipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(2*c 
^(1/4)*Sqrt[a + b*x^2 + c*x^4])))/(a*(b^2 - 4*a*c)))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1088
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[-2*((b + 
2*c*x)/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2])), x] /; FreeQ[{a, b, c}, x] && 
 NeQ[b^2 - 4*a*c, 0]
 

rule 1405
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 
- 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c)) 
), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 2*(p + 1)*( 
b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; Fr 
eeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1432
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 
 Subst[Int[(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 
Maple [A] (verified)

Time = 0.76 (sec) , antiderivative size = 520, normalized size of antiderivative = 1.32

method result size
default \(d \left (-\frac {2 c \left (\frac {b \,x^{3}}{2 a \left (4 a c -b^{2}\right )}-\frac {\left (2 a c -b^{2}\right ) x}{2 a \left (4 a c -b^{2}\right ) c}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {\left (\frac {1}{a}-\frac {2 a c -b^{2}}{a \left (4 a c -b^{2}\right )}\right ) \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\right )+\frac {e \left (2 c \,x^{2}+b \right )}{\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (4 a c -b^{2}\right )}\) \(520\)
elliptic \(-\frac {2 c \left (\frac {b d \,x^{3}}{2 a \left (4 a c -b^{2}\right )}-\frac {e \,x^{2}}{4 a c -b^{2}}-\frac {d \left (2 a c -b^{2}\right ) x}{2 a \left (4 a c -b^{2}\right ) c}-\frac {e b}{2 \left (4 a c -b^{2}\right ) c}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {\left (\frac {d}{a}-\frac {d \left (2 a c -b^{2}\right )}{a \left (4 a c -b^{2}\right )}\right ) \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b c d \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(524\)

Input:

int((e*x+d)/(c*x^4+b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

d*(-2*c*(1/2*b/a/(4*a*c-b^2)*x^3-1/2*(2*a*c-b^2)/a/(4*a*c-b^2)/c*x)/((x^4+ 
b/c*x^2+a/c)*c)^(1/2)+1/4*(1/a-(2*a*c-b^2)/a/(4*a*c-b^2))*2^(1/2)/((-b+(-4 
*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*( 
b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2 
^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2) 
)/a/c)^(1/2))-1/2*b/(4*a*c-b^2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2 
)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a* 
x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2 
^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2) 
)/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/ 
2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))))+e/(c*x^4+b*x^2+a)^(1/2)*(2* 
c*x^2+b)/(4*a*c-b^2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 487, normalized size of antiderivative = 1.24 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=-\frac {\sqrt {\frac {1}{2}} {\left (b^{2} c d x^{4} + b^{3} d x^{2} + a b^{2} d - {\left (a b c d x^{4} + a b^{2} d x^{2} + a^{2} b d\right )} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} E(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - \sqrt {\frac {1}{2}} {\left ({\left (2 \, a b + b^{2}\right )} c d x^{4} + {\left (2 \, a b^{2} + b^{3}\right )} d x^{2} + {\left (2 \, a^{2} b + a b^{2}\right )} d + {\left ({\left (2 \, a^{2} - a b\right )} c d x^{4} + {\left (2 \, a^{2} b - a b^{2}\right )} d x^{2} + {\left (2 \, a^{3} - a^{2} b\right )} d\right )} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} F(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - 2 \, {\left (a b c d x^{3} - 2 \, a^{2} c e x^{2} - a^{2} b e + {\left (a b^{2} - 2 \, a^{2} c\right )} d x\right )} \sqrt {c x^{4} + b x^{2} + a}}{2 \, {\left (a^{3} b^{2} - 4 \, a^{4} c + {\left (a^{2} b^{2} c - 4 \, a^{3} c^{2}\right )} x^{4} + {\left (a^{2} b^{3} - 4 \, a^{3} b c\right )} x^{2}\right )}} \] Input:

integrate((e*x+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")
 

Output:

-1/2*(sqrt(1/2)*(b^2*c*d*x^4 + b^3*d*x^2 + a*b^2*d - (a*b*c*d*x^4 + a*b^2* 
d*x^2 + a^2*b*d)*sqrt((b^2 - 4*a*c)/a^2))*sqrt(a)*sqrt((a*sqrt((b^2 - 4*a* 
c)/a^2) - b)/a)*elliptic_e(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a 
^2) - b)/a)), 1/2*(a*b*sqrt((b^2 - 4*a*c)/a^2) + b^2 - 2*a*c)/(a*c)) - sqr 
t(1/2)*((2*a*b + b^2)*c*d*x^4 + (2*a*b^2 + b^3)*d*x^2 + (2*a^2*b + a*b^2)* 
d + ((2*a^2 - a*b)*c*d*x^4 + (2*a^2*b - a*b^2)*d*x^2 + (2*a^3 - a^2*b)*d)* 
sqrt((b^2 - 4*a*c)/a^2))*sqrt(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)*e 
lliptic_f(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)), 1/2 
*(a*b*sqrt((b^2 - 4*a*c)/a^2) + b^2 - 2*a*c)/(a*c)) - 2*(a*b*c*d*x^3 - 2*a 
^2*c*e*x^2 - a^2*b*e + (a*b^2 - 2*a^2*c)*d*x)*sqrt(c*x^4 + b*x^2 + a))/(a^ 
3*b^2 - 4*a^4*c + (a^2*b^2*c - 4*a^3*c^2)*x^4 + (a^2*b^3 - 4*a^3*b*c)*x^2)
 

Sympy [F]

\[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {d + e x}{\left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((e*x+d)/(c*x**4+b*x**2+a)**(3/2),x)
 

Output:

Integral((d + e*x)/(a + b*x**2 + c*x**4)**(3/2), x)
 

Maxima [F]

\[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {e x + d}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((e*x+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate((e*x + d)/(c*x^4 + b*x^2 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {e x + d}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((e*x+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((e*x + d)/(c*x^4 + b*x^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {d+e\,x}{{\left (c\,x^4+b\,x^2+a\right )}^{3/2}} \,d x \] Input:

int((d + e*x)/(a + b*x^2 + c*x^4)^(3/2),x)
                                                                                    
                                                                                    
 

Output:

int((d + e*x)/(a + b*x^2 + c*x^4)^(3/2), x)
 

Reduce [F]

\[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, b e +2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, c e \,x^{2}+4 \left (\int \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{c^{2} x^{8}+2 b c \,x^{6}+2 a c \,x^{4}+b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) a^{2} c d -\left (\int \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{c^{2} x^{8}+2 b c \,x^{6}+2 a c \,x^{4}+b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) a \,b^{2} d +4 \left (\int \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{c^{2} x^{8}+2 b c \,x^{6}+2 a c \,x^{4}+b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) a b c d \,x^{2}+4 \left (\int \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{c^{2} x^{8}+2 b c \,x^{6}+2 a c \,x^{4}+b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) a \,c^{2} d \,x^{4}-\left (\int \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{c^{2} x^{8}+2 b c \,x^{6}+2 a c \,x^{4}+b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) b^{3} d \,x^{2}-\left (\int \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{c^{2} x^{8}+2 b c \,x^{6}+2 a c \,x^{4}+b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) b^{2} c d \,x^{4}}{4 a \,c^{2} x^{4}-b^{2} c \,x^{4}+4 a b c \,x^{2}-b^{3} x^{2}+4 a^{2} c -a \,b^{2}} \] Input:

int((e*x+d)/(c*x^4+b*x^2+a)^(3/2),x)
 

Output:

(sqrt(a + b*x**2 + c*x**4)*b*e + 2*sqrt(a + b*x**2 + c*x**4)*c*e*x**2 + 4* 
int(sqrt(a + b*x**2 + c*x**4)/(a**2 + 2*a*b*x**2 + 2*a*c*x**4 + b**2*x**4 
+ 2*b*c*x**6 + c**2*x**8),x)*a**2*c*d - int(sqrt(a + b*x**2 + c*x**4)/(a** 
2 + 2*a*b*x**2 + 2*a*c*x**4 + b**2*x**4 + 2*b*c*x**6 + c**2*x**8),x)*a*b** 
2*d + 4*int(sqrt(a + b*x**2 + c*x**4)/(a**2 + 2*a*b*x**2 + 2*a*c*x**4 + b* 
*2*x**4 + 2*b*c*x**6 + c**2*x**8),x)*a*b*c*d*x**2 + 4*int(sqrt(a + b*x**2 
+ c*x**4)/(a**2 + 2*a*b*x**2 + 2*a*c*x**4 + b**2*x**4 + 2*b*c*x**6 + c**2* 
x**8),x)*a*c**2*d*x**4 - int(sqrt(a + b*x**2 + c*x**4)/(a**2 + 2*a*b*x**2 
+ 2*a*c*x**4 + b**2*x**4 + 2*b*c*x**6 + c**2*x**8),x)*b**3*d*x**2 - int(sq 
rt(a + b*x**2 + c*x**4)/(a**2 + 2*a*b*x**2 + 2*a*c*x**4 + b**2*x**4 + 2*b* 
c*x**6 + c**2*x**8),x)*b**2*c*d*x**4)/(4*a**2*c - a*b**2 + 4*a*b*c*x**2 + 
4*a*c**2*x**4 - b**3*x**2 - b**2*c*x**4)