\(\int \frac {\sqrt {c (a x^2+b x^4)}}{d+e x^2} \, dx\) [279]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 105 \[ \int \frac {\sqrt {c \left (a x^2+b x^4\right )}}{d+e x^2} \, dx=\frac {\sqrt {a c x^2+b c x^4}}{e x}-\frac {\sqrt {b d-a e} \sqrt {a c x^2+b c x^4} \arctan \left (\frac {\sqrt {e} \sqrt {a+b x^2}}{\sqrt {b d-a e}}\right )}{e^{3/2} x \sqrt {a+b x^2}} \] Output:

(b*c*x^4+a*c*x^2)^(1/2)/e/x-(-a*e+b*d)^(1/2)*(b*c*x^4+a*c*x^2)^(1/2)*arcta 
n(e^(1/2)*(b*x^2+a)^(1/2)/(-a*e+b*d)^(1/2))/e^(3/2)/x/(b*x^2+a)^(1/2)
 

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.92 \[ \int \frac {\sqrt {c \left (a x^2+b x^4\right )}}{d+e x^2} \, dx=\frac {c x \sqrt {a+b x^2} \left (\sqrt {e} \sqrt {a+b x^2}-\sqrt {b d-a e} \arctan \left (\frac {\sqrt {e} \sqrt {a+b x^2}}{\sqrt {b d-a e}}\right )\right )}{e^{3/2} \sqrt {c x^2 \left (a+b x^2\right )}} \] Input:

Integrate[Sqrt[c*(a*x^2 + b*x^4)]/(d + e*x^2),x]
 

Output:

(c*x*Sqrt[a + b*x^2]*(Sqrt[e]*Sqrt[a + b*x^2] - Sqrt[b*d - a*e]*ArcTan[(Sq 
rt[e]*Sqrt[a + b*x^2])/Sqrt[b*d - a*e]]))/(e^(3/2)*Sqrt[c*x^2*(a + b*x^2)] 
)
 

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.14, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2087, 1466, 353, 60, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c \left (a x^2+b x^4\right )}}{d+e x^2} \, dx\)

\(\Big \downarrow \) 2087

\(\displaystyle \int \frac {\sqrt {a c x^2+b c x^4}}{d+e x^2}dx\)

\(\Big \downarrow \) 1466

\(\displaystyle \frac {\sqrt {a c x^2+b c x^4} \int \frac {x \sqrt {b c x^2+a c}}{e x^2+d}dx}{x \sqrt {a c+b c x^2}}\)

\(\Big \downarrow \) 353

\(\displaystyle \frac {\sqrt {a c x^2+b c x^4} \int \frac {\sqrt {b c x^2+a c}}{e x^2+d}dx^2}{2 x \sqrt {a c+b c x^2}}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {\sqrt {a c x^2+b c x^4} \left (\frac {2 \sqrt {a c+b c x^2}}{e}-\frac {c (b d-a e) \int \frac {1}{\sqrt {b c x^2+a c} \left (e x^2+d\right )}dx^2}{e}\right )}{2 x \sqrt {a c+b c x^2}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\sqrt {a c x^2+b c x^4} \left (\frac {2 \sqrt {a c+b c x^2}}{e}-\frac {2 (b d-a e) \int \frac {1}{\frac {e x^4}{b c}+d-\frac {a e}{b}}d\sqrt {b c x^2+a c}}{b e}\right )}{2 x \sqrt {a c+b c x^2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\sqrt {a c x^2+b c x^4} \left (\frac {2 \sqrt {a c+b c x^2}}{e}-\frac {2 \sqrt {c} \sqrt {b d-a e} \arctan \left (\frac {\sqrt {e} \sqrt {a c+b c x^2}}{\sqrt {c} \sqrt {b d-a e}}\right )}{e^{3/2}}\right )}{2 x \sqrt {a c+b c x^2}}\)

Input:

Int[Sqrt[c*(a*x^2 + b*x^4)]/(d + e*x^2),x]
 

Output:

(Sqrt[a*c*x^2 + b*c*x^4]*((2*Sqrt[a*c + b*c*x^2])/e - (2*Sqrt[c]*Sqrt[b*d 
- a*e]*ArcTan[(Sqrt[e]*Sqrt[a*c + b*c*x^2])/(Sqrt[c]*Sqrt[b*d - a*e])])/e^ 
(3/2)))/(2*x*Sqrt[a*c + b*c*x^2])
 

Defintions of rubi rules used

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 353
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[ 
{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0]
 

rule 1466
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbo 
l] :> Simp[(b*x^2 + c*x^4)^FracPart[p]/(x^(2*FracPart[p])*(b + c*x^2)^FracP 
art[p])   Int[x^(2*p)*(d + e*x^2)^q*(b + c*x^2)^p, x], x] /; FreeQ[{b, c, d 
, e, p, q}, x] &&  !IntegerQ[p]
 

rule 2087
Int[(u_)^(q_.)*(v_)^(p_.), x_Symbol] :> Int[ExpandToSum[u, x]^q*ExpandToSum 
[v, x]^p, x] /; FreeQ[{p, q}, x] && BinomialQ[u, x] && TrinomialQ[v, x] && 
 !(BinomialMatchQ[u, x] && TrinomialMatchQ[v, x])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(194\) vs. \(2(89)=178\).

Time = 0.33 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.86

method result size
pseudoelliptic \(-\frac {-2 \sqrt {-\frac {c \left (a e -b d \right )}{d}}\, \sqrt {-d e}\, \sqrt {\left (b \,x^{2}+a \right ) c}+c \left (a e -b d \right ) \left (\ln \left (\frac {b c d x +\sqrt {-\frac {c \left (a e -b d \right )}{d}}\, \sqrt {\left (b \,x^{2}+a \right ) c}\, d -a c \sqrt {-d e}}{\sqrt {-d e}\, x +d}\right )-\ln \left (\frac {b c d x +\sqrt {-\frac {c \left (a e -b d \right )}{d}}\, \sqrt {\left (b \,x^{2}+a \right ) c}\, d +a c \sqrt {-d e}}{-\sqrt {-d e}\, x +d}\right )\right )}{2 \sqrt {-\frac {c \left (a e -b d \right )}{d}}\, \sqrt {-d e}\, e}\) \(195\)
default \(\frac {\sqrt {c \,x^{2} \left (b \,x^{2}+a \right )}\, \left (-\ln \left (-\frac {2 \left (\sqrt {-d e}\, b c x +\sqrt {\left (b \,x^{2}+a \right ) c}\, \sqrt {\frac {c \left (a e -b d \right )}{e}}\, e +a c e \right )}{-e x +\sqrt {-d e}}\right ) a c e +\ln \left (-\frac {2 \left (\sqrt {-d e}\, b c x +\sqrt {\left (b \,x^{2}+a \right ) c}\, \sqrt {\frac {c \left (a e -b d \right )}{e}}\, e +a c e \right )}{-e x +\sqrt {-d e}}\right ) b c d -\ln \left (-\frac {2 \left (\sqrt {-d e}\, b c x -\sqrt {\left (b \,x^{2}+a \right ) c}\, \sqrt {\frac {c \left (a e -b d \right )}{e}}\, e -a c e \right )}{e x +\sqrt {-d e}}\right ) a c e +\ln \left (-\frac {2 \left (\sqrt {-d e}\, b c x -\sqrt {\left (b \,x^{2}+a \right ) c}\, \sqrt {\frac {c \left (a e -b d \right )}{e}}\, e -a c e \right )}{e x +\sqrt {-d e}}\right ) b c d +2 \sqrt {\left (b \,x^{2}+a \right ) c}\, \sqrt {\frac {c \left (a e -b d \right )}{e}}\, e \right )}{2 x \sqrt {\left (b \,x^{2}+a \right ) c}\, e^{2} \sqrt {\frac {c \left (a e -b d \right )}{e}}}\) \(335\)
risch \(\frac {\sqrt {c \,x^{2} \left (b \,x^{2}+a \right )}}{e x}+\frac {\left (a e -b d \right ) \left (-\frac {\ln \left (\frac {\frac {2 c \left (a e -b d \right )}{e}+\frac {2 b c \sqrt {-d e}\, \left (x -\frac {\sqrt {-d e}}{e}\right )}{e}+2 \sqrt {\frac {c \left (a e -b d \right )}{e}}\, \sqrt {b c \left (x -\frac {\sqrt {-d e}}{e}\right )^{2}+\frac {2 b c \sqrt {-d e}\, \left (x -\frac {\sqrt {-d e}}{e}\right )}{e}+\frac {c \left (a e -b d \right )}{e}}}{x -\frac {\sqrt {-d e}}{e}}\right )}{2 e \sqrt {\frac {c \left (a e -b d \right )}{e}}}-\frac {\ln \left (\frac {\frac {2 c \left (a e -b d \right )}{e}-\frac {2 b c \sqrt {-d e}\, \left (x +\frac {\sqrt {-d e}}{e}\right )}{e}+2 \sqrt {\frac {c \left (a e -b d \right )}{e}}\, \sqrt {b c \left (x +\frac {\sqrt {-d e}}{e}\right )^{2}-\frac {2 b c \sqrt {-d e}\, \left (x +\frac {\sqrt {-d e}}{e}\right )}{e}+\frac {c \left (a e -b d \right )}{e}}}{x +\frac {\sqrt {-d e}}{e}}\right )}{2 e \sqrt {\frac {c \left (a e -b d \right )}{e}}}\right ) \sqrt {c \,x^{2} \left (b \,x^{2}+a \right )}\, \sqrt {\left (b \,x^{2}+a \right ) c}}{e x \left (b \,x^{2}+a \right )}\) \(379\)

Input:

int((c*(b*x^4+a*x^2))^(1/2)/(e*x^2+d),x,method=_RETURNVERBOSE)
 

Output:

-1/2*(-2*(-c/d*(a*e-b*d))^(1/2)*(-d*e)^(1/2)*((b*x^2+a)*c)^(1/2)+c*(a*e-b* 
d)*(ln((b*c*d*x+(-c/d*(a*e-b*d))^(1/2)*((b*x^2+a)*c)^(1/2)*d-a*c*(-d*e)^(1 
/2))/((-d*e)^(1/2)*x+d))-ln((b*c*d*x+(-c/d*(a*e-b*d))^(1/2)*((b*x^2+a)*c)^ 
(1/2)*d+a*c*(-d*e)^(1/2))/(-(-d*e)^(1/2)*x+d))))/(-c/d*(a*e-b*d))^(1/2)/(- 
d*e)^(1/2)/e
 

Fricas [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 313, normalized size of antiderivative = 2.98 \[ \int \frac {\sqrt {c \left (a x^2+b x^4\right )}}{d+e x^2} \, dx=\left [\frac {x \sqrt {-\frac {b c d - a c e}{e}} \log \left (\frac {b^{2} c e^{2} x^{5} - 2 \, {\left (3 \, b^{2} c d e - 4 \, a b c e^{2}\right )} x^{3} + {\left (b^{2} c d^{2} - 8 \, a b c d e + 8 \, a^{2} c e^{2}\right )} x - 4 \, \sqrt {b c x^{4} + a c x^{2}} {\left (b e^{2} x^{2} - b d e + 2 \, a e^{2}\right )} \sqrt {-\frac {b c d - a c e}{e}}}{e^{2} x^{5} + 2 \, d e x^{3} + d^{2} x}\right ) + 4 \, \sqrt {b c x^{4} + a c x^{2}}}{4 \, e x}, \frac {x \sqrt {\frac {b c d - a c e}{e}} \arctan \left (-\frac {\sqrt {b c x^{4} + a c x^{2}} {\left (b e x^{2} - b d + 2 \, a e\right )} \sqrt {\frac {b c d - a c e}{e}}}{2 \, {\left ({\left (b^{2} c d - a b c e\right )} x^{3} + {\left (a b c d - a^{2} c e\right )} x\right )}}\right ) + 2 \, \sqrt {b c x^{4} + a c x^{2}}}{2 \, e x}\right ] \] Input:

integrate((c*(b*x^4+a*x^2))^(1/2)/(e*x^2+d),x, algorithm="fricas")
 

Output:

[1/4*(x*sqrt(-(b*c*d - a*c*e)/e)*log((b^2*c*e^2*x^5 - 2*(3*b^2*c*d*e - 4*a 
*b*c*e^2)*x^3 + (b^2*c*d^2 - 8*a*b*c*d*e + 8*a^2*c*e^2)*x - 4*sqrt(b*c*x^4 
 + a*c*x^2)*(b*e^2*x^2 - b*d*e + 2*a*e^2)*sqrt(-(b*c*d - a*c*e)/e))/(e^2*x 
^5 + 2*d*e*x^3 + d^2*x)) + 4*sqrt(b*c*x^4 + a*c*x^2))/(e*x), 1/2*(x*sqrt(( 
b*c*d - a*c*e)/e)*arctan(-1/2*sqrt(b*c*x^4 + a*c*x^2)*(b*e*x^2 - b*d + 2*a 
*e)*sqrt((b*c*d - a*c*e)/e)/((b^2*c*d - a*b*c*e)*x^3 + (a*b*c*d - a^2*c*e) 
*x)) + 2*sqrt(b*c*x^4 + a*c*x^2))/(e*x)]
 

Sympy [F]

\[ \int \frac {\sqrt {c \left (a x^2+b x^4\right )}}{d+e x^2} \, dx=\int \frac {\sqrt {c x^{2} \left (a + b x^{2}\right )}}{d + e x^{2}}\, dx \] Input:

integrate((c*(b*x**4+a*x**2))**(1/2)/(e*x**2+d),x)
 

Output:

Integral(sqrt(c*x**2*(a + b*x**2))/(d + e*x**2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {c \left (a x^2+b x^4\right )}}{d+e x^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((c*(b*x^4+a*x^2))^(1/2)/(e*x^2+d),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 182 vs. \(2 (89) = 178\).

Time = 0.13 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.73 \[ \int \frac {\sqrt {c \left (a x^2+b x^4\right )}}{d+e x^2} \, dx=-\frac {{\left (b c d \mathrm {sgn}\left (x\right ) - a c e \mathrm {sgn}\left (x\right )\right )} \arctan \left (\frac {\sqrt {b c x^{2} + a c} e}{\sqrt {b c d e - a c e^{2}}}\right )}{\sqrt {b c d e - a c e^{2}} e} + \frac {\sqrt {b c x^{2} + a c} \mathrm {sgn}\left (x\right )}{e} + \frac {{\left (b c d \arctan \left (\frac {\sqrt {a c} e}{\sqrt {b c d e - a c e^{2}}}\right ) - a c e \arctan \left (\frac {\sqrt {a c} e}{\sqrt {b c d e - a c e^{2}}}\right ) - \sqrt {b c d e - a c e^{2}} \sqrt {a c}\right )} \mathrm {sgn}\left (x\right )}{\sqrt {b c d e - a c e^{2}} e} \] Input:

integrate((c*(b*x^4+a*x^2))^(1/2)/(e*x^2+d),x, algorithm="giac")
 

Output:

-(b*c*d*sgn(x) - a*c*e*sgn(x))*arctan(sqrt(b*c*x^2 + a*c)*e/sqrt(b*c*d*e - 
 a*c*e^2))/(sqrt(b*c*d*e - a*c*e^2)*e) + sqrt(b*c*x^2 + a*c)*sgn(x)/e + (b 
*c*d*arctan(sqrt(a*c)*e/sqrt(b*c*d*e - a*c*e^2)) - a*c*e*arctan(sqrt(a*c)* 
e/sqrt(b*c*d*e - a*c*e^2)) - sqrt(b*c*d*e - a*c*e^2)*sqrt(a*c))*sgn(x)/(sq 
rt(b*c*d*e - a*c*e^2)*e)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c \left (a x^2+b x^4\right )}}{d+e x^2} \, dx=\int \frac {\sqrt {c\,\left (b\,x^4+a\,x^2\right )}}{e\,x^2+d} \,d x \] Input:

int((c*(a*x^2 + b*x^4))^(1/2)/(d + e*x^2),x)
 

Output:

int((c*(a*x^2 + b*x^4))^(1/2)/(d + e*x^2), x)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.89 \[ \int \frac {\sqrt {c \left (a x^2+b x^4\right )}}{d+e x^2} \, dx=\frac {\sqrt {c}\, \left (-\sqrt {e}\, \sqrt {-a e +b d}\, \mathit {atan} \left (\frac {\sqrt {b}\, \sqrt {b \,x^{2}+a}\, e x +a e +b e \,x^{2}}{\sqrt {e}\, \sqrt {b \,x^{2}+a}\, \sqrt {-a e +b d}+\sqrt {e}\, \sqrt {b}\, \sqrt {-a e +b d}\, x}\right )+\sqrt {b \,x^{2}+a}\, e \right )}{e^{2}} \] Input:

int((c*(b*x^4+a*x^2))^(1/2)/(e*x^2+d),x)
 

Output:

(sqrt(c)*( - sqrt(e)*sqrt( - a*e + b*d)*atan((sqrt(b)*sqrt(a + b*x**2)*e*x 
 + a*e + b*e*x**2)/(sqrt(e)*sqrt(a + b*x**2)*sqrt( - a*e + b*d) + sqrt(e)* 
sqrt(b)*sqrt( - a*e + b*d)*x)) + sqrt(a + b*x**2)*e))/e**2