\(\int \frac {x^2}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx\) [18]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 248 \[ \int \frac {x^2}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\frac {(-1)^{2/3} \arctan \left (\frac {3 \sqrt [3]{-3} 2^{2/3}-2 x}{\sqrt {6 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )}}\right )}{27\ 2^{5/6} \sqrt [6]{3} \left (1+\sqrt [3]{-1}\right )^2 \sqrt {4-3 (-3)^{2/3} \sqrt [3]{2}}}+\frac {(-1)^{2/3} \arctan \left (\frac {3 (-2)^{2/3} \sqrt [3]{3}+2 x}{\sqrt {6 \left (4+3 \sqrt [3]{-2} 3^{2/3}\right )}}\right )}{81 \sqrt [3]{2} \sqrt [6]{3} \sqrt {8+9 i \sqrt [3]{2} \sqrt [6]{3}+3 \sqrt [3]{2} 3^{2/3}}}-\frac {\text {arctanh}\left (\frac {\sqrt [6]{2} \left (3 \sqrt [3]{3}+\sqrt [3]{2} x\right )}{\sqrt {3 \left (-4+3 \sqrt [3]{2} 3^{2/3}\right )}}\right )}{81\ 2^{5/6} \sqrt [6]{3} \sqrt {-4+3 \sqrt [3]{2} 3^{2/3}}} \] Output:

1/162*(-1)^(2/3)*arctan((3*(-3)^(1/3)*2^(2/3)-2*x)/(24-18*(-3)^(2/3)*2^(1/ 
3))^(1/2))*2^(1/6)*3^(5/6)/(1+(-1)^(1/3))^2/(4-3*(-3)^(2/3)*2^(1/3))^(1/2) 
+1/486*(-1)^(2/3)*arctan((3*(-2)^(2/3)*3^(1/3)+2*x)/(24+18*(-2)^(1/3)*3^(2 
/3))^(1/2))*2^(2/3)*3^(5/6)/(8+9*I*2^(1/3)*3^(1/6)+3*2^(1/3)*3^(2/3))^(1/2 
)-1/486*arctanh(2^(1/6)*(3*3^(1/3)+2^(1/3)*x)/(-12+9*2^(1/3)*3^(2/3))^(1/2 
))*2^(1/6)*3^(5/6)/(-4+3*2^(1/3)*3^(2/3))^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.24 \[ \int \frac {x^2}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\frac {1}{6} \text {RootSum}\left [216+108 \text {$\#$1}^2+324 \text {$\#$1}^3+18 \text {$\#$1}^4+\text {$\#$1}^6\&,\frac {\log (x-\text {$\#$1}) \text {$\#$1}}{36+162 \text {$\#$1}+12 \text {$\#$1}^2+\text {$\#$1}^4}\&\right ] \] Input:

Integrate[x^2/(216 + 108*x^2 + 324*x^3 + 18*x^4 + x^6),x]
 

Output:

RootSum[216 + 108*#1^2 + 324*#1^3 + 18*#1^4 + #1^6 & , (Log[x - #1]*#1)/(3 
6 + 162*#1 + 12*#1^2 + #1^4) & ]/6
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 241, normalized size of antiderivative = 0.97, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {2466, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{x^6+18 x^4+324 x^3+108 x^2+216} \, dx\)

\(\Big \downarrow \) 2466

\(\displaystyle 1259712 \int \left (\frac {(-1)^{2/3}}{68024448 \sqrt [3]{2} 3^{2/3} \left (x^2+3 (-2)^{2/3} \sqrt [3]{3} x+6\right )}+\frac {1}{68024448 \sqrt [3]{2} 3^{2/3} \left (x^2+3\ 2^{2/3} \sqrt [3]{3} x+6\right )}-\frac {(-1)^{2/3}}{22674816 \sqrt [3]{2} 3^{2/3} \left (1+\sqrt [3]{-1}\right )^2 \left (x^2-3 \sqrt [3]{-3} 2^{2/3} x+6\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 1259712 \left (\frac {(-1)^{2/3} \arctan \left (\frac {2 x+3 (-2)^{2/3} \sqrt [3]{3}}{\sqrt {6 \left (4+3 \sqrt [3]{-2} 3^{2/3}\right )}}\right )}{102036672\ 2^{5/6} \sqrt [6]{3} \sqrt {4+3 \sqrt [3]{-2} 3^{2/3}}}+\frac {(-1)^{2/3} \arctan \left (\frac {\sqrt [6]{2} \left (3 \sqrt [3]{-3}-\sqrt [3]{2} x\right )}{\sqrt {3 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )}}\right )}{34012224\ 2^{5/6} \sqrt [6]{3} \left (1+\sqrt [3]{-1}\right )^2 \sqrt {4-3 (-3)^{2/3} \sqrt [3]{2}}}-\frac {\text {arctanh}\left (\frac {\sqrt [6]{2} \left (\sqrt [3]{2} x+3 \sqrt [3]{3}\right )}{\sqrt {3 \left (3 \sqrt [3]{2} 3^{2/3}-4\right )}}\right )}{102036672\ 2^{5/6} \sqrt [6]{3} \sqrt {3 \sqrt [3]{2} 3^{2/3}-4}}\right )\)

Input:

Int[x^2/(216 + 108*x^2 + 324*x^3 + 18*x^4 + x^6),x]
 

Output:

1259712*(((-1)^(2/3)*ArcTan[(3*(-2)^(2/3)*3^(1/3) + 2*x)/Sqrt[6*(4 + 3*(-2 
)^(1/3)*3^(2/3))]])/(102036672*2^(5/6)*3^(1/6)*Sqrt[4 + 3*(-2)^(1/3)*3^(2/ 
3)]) + ((-1)^(2/3)*ArcTan[(2^(1/6)*(3*(-3)^(1/3) - 2^(1/3)*x))/Sqrt[3*(4 - 
 3*(-3)^(2/3)*2^(1/3))]])/(34012224*2^(5/6)*3^(1/6)*(1 + (-1)^(1/3))^2*Sqr 
t[4 - 3*(-3)^(2/3)*2^(1/3)]) - ArcTanh[(2^(1/6)*(3*3^(1/3) + 2^(1/3)*x))/S 
qrt[3*(-4 + 3*2^(1/3)*3^(2/3))]]/(102036672*2^(5/6)*3^(1/6)*Sqrt[-4 + 3*2^ 
(1/3)*3^(2/3)]))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2466
Int[(u_.)*(Q6_)^(p_), x_Symbol] :> With[{a = Coeff[Q6, x, 0], b = Coeff[Q6, 
 x, 2], c = Coeff[Q6, x, 3], d = Coeff[Q6, x, 4], e = Coeff[Q6, x, 6]}, Sim 
p[1/(3^(3*p)*a^(2*p))   Int[ExpandIntegrand[u*(3*a + 3*Rt[a, 3]^2*Rt[c, 3]* 
x + b*x^2)^p*(3*a - 3*(-1)^(1/3)*Rt[a, 3]^2*Rt[c, 3]*x + b*x^2)^p*(3*a + 3* 
(-1)^(2/3)*Rt[a, 3]^2*Rt[c, 3]*x + b*x^2)^p, x], x], x] /; EqQ[b^2 - 3*a*d, 
 0] && EqQ[b^3 - 27*a^2*e, 0]] /; ILtQ[p, 0] && PolyQ[Q6, x, 6] && EqQ[Coef 
f[Q6, x, 1], 0] && EqQ[Coeff[Q6, x, 5], 0] && RationalFunctionQ[u, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.04 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.23

method result size
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}+18 \textit {\_Z}^{4}+324 \textit {\_Z}^{3}+108 \textit {\_Z}^{2}+216\right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{5}+12 \textit {\_R}^{3}+162 \textit {\_R}^{2}+36 \textit {\_R}}\right )}{6}\) \(56\)
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}+18 \textit {\_Z}^{4}+324 \textit {\_Z}^{3}+108 \textit {\_Z}^{2}+216\right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{5}+12 \textit {\_R}^{3}+162 \textit {\_R}^{2}+36 \textit {\_R}}\right )}{6}\) \(56\)

Input:

int(x^2/(x^6+18*x^4+324*x^3+108*x^2+216),x,method=_RETURNVERBOSE)
 

Output:

1/6*sum(_R^2/(_R^5+12*_R^3+162*_R^2+36*_R)*ln(x-_R),_R=RootOf(_Z^6+18*_Z^4 
+324*_Z^3+108*_Z^2+216))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1173 vs. \(2 (162) = 324\).

Time = 0.83 (sec) , antiderivative size = 1173, normalized size of antiderivative = 4.73 \[ \int \frac {x^2}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\text {Too large to display} \] Input:

integrate(x^2/(x^6+18*x^4+324*x^3+108*x^2+216),x, algorithm="fricas")
 

Output:

1/324*sqrt(1/633)*sqrt(6*18^(2/3) + 8*18^(1/3) + 81)*log(1/211*sqrt(1/633) 
*(3*(6*18^(2/3) + 8*18^(1/3) + 81)^2 - 3741*18^(2/3) - 4988*18^(1/3) - 248 
67)*sqrt(6*18^(2/3) + 8*18^(1/3) + 81) - 1/422*(6*18^(2/3) + 8*18^(1/3) + 
81)^2 + 2*x + 729/211*18^(2/3) + 972/211*18^(1/3) + 8289/422) - 1/324*sqrt 
(1/633)*sqrt(6*18^(2/3) + 8*18^(1/3) + 81)*log(-1/211*sqrt(1/633)*(3*(6*18 
^(2/3) + 8*18^(1/3) + 81)^2 - 3741*18^(2/3) - 4988*18^(1/3) - 24867)*sqrt( 
6*18^(2/3) + 8*18^(1/3) + 81) - 1/422*(6*18^(2/3) + 8*18^(1/3) + 81)^2 + 2 
*x + 729/211*18^(2/3) + 972/211*18^(1/3) + 8289/422) - 1/108*sqrt(-1/1899* 
18^(2/3) + 1/1266*sqrt(-1/27*(6*18^(2/3) + 8*18^(1/3) + 81)^2 + 36*18^(2/3 
) + 48*18^(1/3) + 371) - 4/5697*18^(1/3) + 3/211)*log(1/211*(6*18^(2/3) + 
8*18^(1/3) + 81)^2 + 9/211*sqrt(-1/27*(6*18^(2/3) + 8*18^(1/3) + 81)^2 + 3 
6*18^(2/3) + 48*18^(1/3) + 371)*(6*18^(2/3) + 8*18^(1/3) + 81) + 3/211*(6* 
(6*18^(2/3) + 8*18^(1/3) + 81)^2 + 9*sqrt(-1/27*(6*18^(2/3) + 8*18^(1/3) + 
 81)^2 + 36*18^(2/3) + 48*18^(1/3) + 371)*(36*18^(2/3) + 48*18^(1/3) + 275 
) - 7482*18^(2/3) - 9976*18^(1/3) - 49734)*sqrt(-1/1899*18^(2/3) + 1/1266* 
sqrt(-1/27*(6*18^(2/3) + 8*18^(1/3) + 81)^2 + 36*18^(2/3) + 48*18^(1/3) + 
371) - 4/5697*18^(1/3) + 3/211) + 8*x - 1458/211*18^(2/3) - 1944/211*18^(1 
/3) - 8289/211) + 1/108*sqrt(-1/1899*18^(2/3) + 1/1266*sqrt(-1/27*(6*18^(2 
/3) + 8*18^(1/3) + 81)^2 + 36*18^(2/3) + 48*18^(1/3) + 371) - 4/5697*18^(1 
/3) + 3/211)*log(1/211*(6*18^(2/3) + 8*18^(1/3) + 81)^2 + 9/211*sqrt(-1...
 

Sympy [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.19 \[ \int \frac {x^2}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\operatorname {RootSum} {\left (732274264442769408 t^{6} - 2677850419968 t^{4} + 2834352 t^{2} - 1, \left ( t \mapsto t \log {\left (10170475895038464 t^{5} - 5231726283456 t^{4} - 31809932496 t^{3} + 19131876 t^{2} + 19683 t + x - \frac {27}{2} \right )} \right )\right )} \] Input:

integrate(x**2/(x**6+18*x**4+324*x**3+108*x**2+216),x)
 

Output:

RootSum(732274264442769408*_t**6 - 2677850419968*_t**4 + 2834352*_t**2 - 1 
, Lambda(_t, _t*log(10170475895038464*_t**5 - 5231726283456*_t**4 - 318099 
32496*_t**3 + 19131876*_t**2 + 19683*_t + x - 27/2)))
 

Maxima [F]

\[ \int \frac {x^2}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\int { \frac {x^{2}}{x^{6} + 18 \, x^{4} + 324 \, x^{3} + 108 \, x^{2} + 216} \,d x } \] Input:

integrate(x^2/(x^6+18*x^4+324*x^3+108*x^2+216),x, algorithm="maxima")
 

Output:

integrate(x^2/(x^6 + 18*x^4 + 324*x^3 + 108*x^2 + 216), x)
 

Giac [F]

\[ \int \frac {x^2}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\int { \frac {x^{2}}{x^{6} + 18 \, x^{4} + 324 \, x^{3} + 108 \, x^{2} + 216} \,d x } \] Input:

integrate(x^2/(x^6+18*x^4+324*x^3+108*x^2+216),x, algorithm="giac")
 

Output:

integrate(x^2/(x^6 + 18*x^4 + 324*x^3 + 108*x^2 + 216), x)
 

Mupad [B] (verification not implemented)

Time = 22.66 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.00 \[ \int \frac {x^2}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\sum _{k=1}^6\ln \left (-\frac {216\,\left (32134205039616\,x-1836660096\,{\mathrm {root}\left (z^6-2834352\,z^4+2677850419968\,z^2-732274264442769408,z,k\right )}^2-1889568\,{\mathrm {root}\left (z^6-2834352\,z^4+2677850419968\,z^2-732274264442769408,z,k\right )}^3+972\,{\mathrm {root}\left (z^6-2834352\,z^4+2677850419968\,z^2-732274264442769408,z,k\right )}^4+{\mathrm {root}\left (z^6-2834352\,z^4+2677850419968\,z^2-732274264442769408,z,k\right )}^5+132239526912\,x\,\mathrm {root}\left (z^6-2834352\,z^4+2677850419968\,z^2-732274264442769408,z,k\right )+204073344\,x\,{\mathrm {root}\left (z^6-2834352\,z^4+2677850419968\,z^2-732274264442769408,z,k\right )}^2+139968\,x\,{\mathrm {root}\left (z^6-2834352\,z^4+2677850419968\,z^2-732274264442769408,z,k\right )}^3+36\,x\,{\mathrm {root}\left (z^6-2834352\,z^4+2677850419968\,z^2-732274264442769408,z,k\right )}^4+863230245120\,\mathrm {root}\left (z^6-2834352\,z^4+2677850419968\,z^2-732274264442769408,z,k\right )+781932322630656\right )}{{\mathrm {root}\left (z^6-2834352\,z^4+2677850419968\,z^2-732274264442769408,z,k\right )}^5}\right )\,\mathrm {root}\left (z^6-\frac {z^4}{273456}+\frac {z^2}{258356853504}-\frac {1}{732274264442769408},z,k\right ) \] Input:

int(x^2/(108*x^2 + 324*x^3 + 18*x^4 + x^6 + 216),x)
 

Output:

symsum(log(-(216*(32134205039616*x - 1836660096*root(z^6 - 2834352*z^4 + 2 
677850419968*z^2 - 732274264442769408, z, k)^2 - 1889568*root(z^6 - 283435 
2*z^4 + 2677850419968*z^2 - 732274264442769408, z, k)^3 + 972*root(z^6 - 2 
834352*z^4 + 2677850419968*z^2 - 732274264442769408, z, k)^4 + root(z^6 - 
2834352*z^4 + 2677850419968*z^2 - 732274264442769408, z, k)^5 + 1322395269 
12*x*root(z^6 - 2834352*z^4 + 2677850419968*z^2 - 732274264442769408, z, k 
) + 204073344*x*root(z^6 - 2834352*z^4 + 2677850419968*z^2 - 7322742644427 
69408, z, k)^2 + 139968*x*root(z^6 - 2834352*z^4 + 2677850419968*z^2 - 732 
274264442769408, z, k)^3 + 36*x*root(z^6 - 2834352*z^4 + 2677850419968*z^2 
 - 732274264442769408, z, k)^4 + 863230245120*root(z^6 - 2834352*z^4 + 267 
7850419968*z^2 - 732274264442769408, z, k) + 781932322630656))/root(z^6 - 
2834352*z^4 + 2677850419968*z^2 - 732274264442769408, z, k)^5)*root(z^6 - 
z^4/273456 + z^2/258356853504 - 1/732274264442769408, z, k), k, 1, 6)
 

Reduce [F]

\[ \int \frac {x^2}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\int \frac {x^{2}}{x^{6}+18 x^{4}+324 x^{3}+108 x^{2}+216}d x \] Input:

int(x^2/(x^6+18*x^4+324*x^3+108*x^2+216),x)
 

Output:

int(x**2/(x**6 + 18*x**4 + 324*x**3 + 108*x**2 + 216),x)