\(\int \frac {2+3 x}{(2^{2/3}-x) \sqrt {-1+x^3}} \, dx\) [100]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-2)]
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 176 \[ \int \frac {2+3 x}{\left (2^{2/3}-x\right ) \sqrt {-1+x^3}} \, dx=-\frac {2 \left (2+3\ 2^{2/3}\right ) \text {arctanh}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} x\right )}{\sqrt {-1+x^3}}\right )}{3 \sqrt {3}}+\frac {2 \left (3-2 \sqrt [3]{2}\right ) \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}} \] Output:

-2/9*(2+3*2^(2/3))*arctanh(3^(1/2)*(1-2^(1/3)*x)/(x^3-1)^(1/2))*3^(1/2)+2/ 
9*(3-2*2^(1/3))*(1/2*6^(1/2)-1/2*2^(1/2))*(1-x)*((x^2+x+1)/(1-3^(1/2)-x)^2 
)^(1/2)*EllipticF((1+3^(1/2)-x)/(1-3^(1/2)-x),2*I-I*3^(1/2))*3^(3/4)/(-(1- 
x)/(1-3^(1/2)-x)^2)^(1/2)/(x^3-1)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 20.69 (sec) , antiderivative size = 333, normalized size of antiderivative = 1.89 \[ \int \frac {2+3 x}{\left (2^{2/3}-x\right ) \sqrt {-1+x^3}} \, dx=\frac {2 \sqrt [6]{2} \sqrt {-\frac {i (-1+x)}{3 i+\sqrt {3}}} \left (-3 i \sqrt {-i+\sqrt {3}-2 i x} \left (-6 i-3 i \sqrt [3]{2}+2 \sqrt {3}-\sqrt [3]{2} \sqrt {3}+\left (-3 i \sqrt [3]{2}+4 \sqrt {3}+\sqrt [3]{2} \sqrt {3}\right ) x\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {i+\sqrt {3}+2 i x}}{\sqrt {2} \sqrt [4]{3}}\right ),\frac {2 \sqrt {3}}{3 i+\sqrt {3}}\right )+4 \sqrt {3} \left (3+\sqrt [3]{2}\right ) \sqrt {i+\sqrt {3}+2 i x} \sqrt {1+x+x^2} \operatorname {EllipticPi}\left (\frac {2 \sqrt {3}}{i+2 i 2^{2/3}+\sqrt {3}},\arcsin \left (\frac {\sqrt {i+\sqrt {3}+2 i x}}{\sqrt {2} \sqrt [4]{3}}\right ),\frac {2 \sqrt {3}}{3 i+\sqrt {3}}\right )\right )}{\sqrt {3} \left (i+2 i 2^{2/3}+\sqrt {3}\right ) \sqrt {i+\sqrt {3}+2 i x} \sqrt {-1+x^3}} \] Input:

Integrate[(2 + 3*x)/((2^(2/3) - x)*Sqrt[-1 + x^3]),x]
 

Output:

(2*2^(1/6)*Sqrt[((-I)*(-1 + x))/(3*I + Sqrt[3])]*((-3*I)*Sqrt[-I + Sqrt[3] 
 - (2*I)*x]*(-6*I - (3*I)*2^(1/3) + 2*Sqrt[3] - 2^(1/3)*Sqrt[3] + ((-3*I)* 
2^(1/3) + 4*Sqrt[3] + 2^(1/3)*Sqrt[3])*x)*EllipticF[ArcSin[Sqrt[I + Sqrt[3 
] + (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])] + 4*Sqrt[3]* 
(3 + 2^(1/3))*Sqrt[I + Sqrt[3] + (2*I)*x]*Sqrt[1 + x + x^2]*EllipticPi[(2* 
Sqrt[3])/(I + (2*I)*2^(2/3) + Sqrt[3]), ArcSin[Sqrt[I + Sqrt[3] + (2*I)*x] 
/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])]))/(Sqrt[3]*(I + (2*I)*2^ 
(2/3) + Sqrt[3])*Sqrt[I + Sqrt[3] + (2*I)*x]*Sqrt[-1 + x^3])
 

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.02, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {2564, 27, 760, 2562, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {3 x+2}{\left (2^{2/3}-x\right ) \sqrt {x^3-1}} \, dx\)

\(\Big \downarrow \) 2564

\(\displaystyle \frac {1}{3} \left (3+\sqrt [3]{2}\right ) \int \frac {2^{2/3} \left (\sqrt [3]{2} x+1\right )}{\left (2^{2/3}-x\right ) \sqrt {x^3-1}}dx-\frac {1}{3} \left (3-2 \sqrt [3]{2}\right ) \int \frac {1}{\sqrt {x^3-1}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} 2^{2/3} \left (3+\sqrt [3]{2}\right ) \int \frac {\sqrt [3]{2} x+1}{\left (2^{2/3}-x\right ) \sqrt {x^3-1}}dx-\frac {1}{3} \left (3-2 \sqrt [3]{2}\right ) \int \frac {1}{\sqrt {x^3-1}}dx\)

\(\Big \downarrow \) 760

\(\displaystyle \frac {1}{3} 2^{2/3} \left (3+\sqrt [3]{2}\right ) \int \frac {\sqrt [3]{2} x+1}{\left (2^{2/3}-x\right ) \sqrt {x^3-1}}dx+\frac {2 \left (3-2 \sqrt [3]{2}\right ) \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\)

\(\Big \downarrow \) 2562

\(\displaystyle \frac {2 \left (3-2 \sqrt [3]{2}\right ) \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}-\frac {2}{3} 2^{2/3} \left (3+\sqrt [3]{2}\right ) \int \frac {1}{1-\frac {3 \left (1-\sqrt [3]{2} x\right )^2}{x^3-1}}d\frac {1-\sqrt [3]{2} x}{\sqrt {x^3-1}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 \left (3-2 \sqrt [3]{2}\right ) \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}-\frac {2\ 2^{2/3} \left (3+\sqrt [3]{2}\right ) \text {arctanh}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} x\right )}{\sqrt {x^3-1}}\right )}{3 \sqrt {3}}\)

Input:

Int[(2 + 3*x)/((2^(2/3) - x)*Sqrt[-1 + x^3]),x]
 

Output:

(-2*2^(2/3)*(3 + 2^(1/3))*ArcTanh[(Sqrt[3]*(1 - 2^(1/3)*x))/Sqrt[-1 + x^3] 
])/(3*Sqrt[3]) + (2*(3 - 2*2^(1/3))*Sqrt[2 - Sqrt[3]]*(1 - x)*Sqrt[(1 + x 
+ x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3 
] - x)], -7 + 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]* 
Sqrt[-1 + x^3])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 2562
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_ 
Symbol] :> Simp[2*(e/d)   Subst[Int[1/(1 + 3*a*x^2), x], x, (1 + 2*d*(x/c)) 
/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] 
&& EqQ[b*c^3 - 4*a*d^3, 0] && EqQ[2*d*e + c*f, 0]
 

rule 2564
Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x 
_Symbol] :> Simp[(2*d*e + c*f)/(3*c*d)   Int[1/Sqrt[a + b*x^3], x], x] + Si 
mp[(d*e - c*f)/(3*c*d)   Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x 
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && (EqQ[b*c^3 - 4*a* 
d^3, 0] || EqQ[b*c^3 + 8*a*d^3, 0]) && NeQ[2*d*e + c*f, 0]
 
Maple [A] (verified)

Time = 3.57 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.51

method result size
default \(-\frac {2 \left (2+3 \,2^{\frac {2}{3}}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticPi}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-2^{\frac {2}{3}}+1}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}\, \left (-2^{\frac {2}{3}}+1\right )}-\frac {6 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}\) \(266\)
elliptic \(-\frac {6 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}+\frac {2 \left (-2-3 \,2^{\frac {2}{3}}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticPi}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-2^{\frac {2}{3}}+1}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}\, \left (-2^{\frac {2}{3}}+1\right )}\) \(266\)

Input:

int((2+3*x)/(2^(2/3)-x)/(x^3-1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2*(2+3*2^(2/3))*(-3/2-1/2*I*3^(1/2))*((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2)*( 
(x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2+1/2*I*3^(1/2))/(3 
/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)/(-2^(2/3)+1)*EllipticPi(((x-1)/(-3/ 
2-1/2*I*3^(1/2)))^(1/2),(3/2+1/2*I*3^(1/2))/(-2^(2/3)+1),((3/2+1/2*I*3^(1/ 
2))/(3/2-1/2*I*3^(1/2)))^(1/2))-6*(-3/2-1/2*I*3^(1/2))*((x-1)/(-3/2-1/2*I* 
3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2+ 
1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)*EllipticF(((x-1)/( 
-3/2-1/2*I*3^(1/2)))^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2) 
)
 

Fricas [F(-2)]

Exception generated. \[ \int \frac {2+3 x}{\left (2^{2/3}-x\right ) \sqrt {-1+x^3}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((2+3*x)/(2^(2/3)-x)/(x^3-1)^(1/2),x, algorithm="fricas")
 

Output:

Exception raised: TypeError >>  Error detected within library code:   catd 
ef: division by zero
 

Sympy [F]

\[ \int \frac {2+3 x}{\left (2^{2/3}-x\right ) \sqrt {-1+x^3}} \, dx=- \int \frac {3 x}{x \sqrt {x^{3} - 1} - 2^{\frac {2}{3}} \sqrt {x^{3} - 1}}\, dx - \int \frac {2}{x \sqrt {x^{3} - 1} - 2^{\frac {2}{3}} \sqrt {x^{3} - 1}}\, dx \] Input:

integrate((2+3*x)/(2**(2/3)-x)/(x**3-1)**(1/2),x)
 

Output:

-Integral(3*x/(x*sqrt(x**3 - 1) - 2**(2/3)*sqrt(x**3 - 1)), x) - Integral( 
2/(x*sqrt(x**3 - 1) - 2**(2/3)*sqrt(x**3 - 1)), x)
 

Maxima [F]

\[ \int \frac {2+3 x}{\left (2^{2/3}-x\right ) \sqrt {-1+x^3}} \, dx=\int { -\frac {3 \, x + 2}{\sqrt {x^{3} - 1} {\left (x - 2^{\frac {2}{3}}\right )}} \,d x } \] Input:

integrate((2+3*x)/(2^(2/3)-x)/(x^3-1)^(1/2),x, algorithm="maxima")
 

Output:

-integrate((3*x + 2)/(sqrt(x^3 - 1)*(x - 2^(2/3))), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {2+3 x}{\left (2^{2/3}-x\right ) \sqrt {-1+x^3}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((2+3*x)/(2^(2/3)-x)/(x^3-1)^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{1,[1]%%%} / %%%{%%{[1,0,0]:[1,0,0,-2]%%},[1]%%%} Error: Ba 
d Argumen
 

Mupad [F(-1)]

Timed out. \[ \int \frac {2+3 x}{\left (2^{2/3}-x\right ) \sqrt {-1+x^3}} \, dx=\int -\frac {3\,x+2}{\sqrt {x^3-1}\,\left (x-2^{2/3}\right )} \,d x \] Input:

int(-(3*x + 2)/((x^3 - 1)^(1/2)*(x - 2^(2/3))),x)
 

Output:

int(-(3*x + 2)/((x^3 - 1)^(1/2)*(x - 2^(2/3))), x)
 

Reduce [F]

\[ \int \frac {2+3 x}{\left (2^{2/3}-x\right ) \sqrt {-1+x^3}} \, dx=3 \left (\int \frac {x}{\sqrt {x^{3}-1}\, 2^{\frac {2}{3}}-\sqrt {x^{3}-1}\, x}d x \right )+2 \left (\int \frac {1}{\sqrt {x^{3}-1}\, 2^{\frac {2}{3}}-\sqrt {x^{3}-1}\, x}d x \right ) \] Input:

int((2+3*x)/(2^(2/3)-x)/(x^3-1)^(1/2),x)
 

Output:

3*int(x/(sqrt(x**3 - 1)*2**(2/3) - sqrt(x**3 - 1)*x),x) + 2*int(1/(sqrt(x* 
*3 - 1)*2**(2/3) - sqrt(x**3 - 1)*x),x)