\(\int \frac {x}{(2+x) \sqrt {-1+x^3}} \, dx\) [140]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 148 \[ \int \frac {x}{(2+x) \sqrt {-1+x^3}} \, dx=\frac {4}{9} \arctan \left (\frac {(1-x)^2}{3 \sqrt {-1+x^3}}\right )-\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}} \] Output:

4/9*arctan(1/3*(1-x)^2/(x^3-1)^(1/2))-2/9*(1/2*6^(1/2)-1/2*2^(1/2))*(1-x)* 
((x^2+x+1)/(1-3^(1/2)-x)^2)^(1/2)*EllipticF((1+3^(1/2)-x)/(1-3^(1/2)-x),2* 
I-I*3^(1/2))*3^(3/4)/(-(1-x)/(1-3^(1/2)-x)^2)^(1/2)/(x^3-1)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.22 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.30 \[ \int \frac {x}{(2+x) \sqrt {-1+x^3}} \, dx=\frac {2 \sqrt {\frac {1-x}{1+\sqrt [3]{-1}}} \left (\frac {\left (\sqrt [3]{-1}+x\right ) \sqrt {\frac {\sqrt [3]{-1}+(-1)^{2/3} x}{1+\sqrt [3]{-1}}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {1-(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right ),\sqrt [3]{-1}\right )}{\sqrt {\frac {1-(-1)^{2/3} x}{1+\sqrt [3]{-1}}}}+\frac {2 i \sqrt {1+x+x^2} \operatorname {EllipticPi}\left (\frac {2 \sqrt {3}}{3 i+\sqrt {3}},\arcsin \left (\sqrt {\frac {1-(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right ),\sqrt [3]{-1}\right )}{-2+\sqrt [3]{-1}}\right )}{\sqrt {-1+x^3}} \] Input:

Integrate[x/((2 + x)*Sqrt[-1 + x^3]),x]
 

Output:

(2*Sqrt[(1 - x)/(1 + (-1)^(1/3))]*((((-1)^(1/3) + x)*Sqrt[((-1)^(1/3) + (- 
1)^(2/3)*x)/(1 + (-1)^(1/3))]*EllipticF[ArcSin[Sqrt[(1 - (-1)^(2/3)*x)/(1 
+ (-1)^(1/3))]], (-1)^(1/3)])/Sqrt[(1 - (-1)^(2/3)*x)/(1 + (-1)^(1/3))] + 
((2*I)*Sqrt[1 + x + x^2]*EllipticPi[(2*Sqrt[3])/(3*I + Sqrt[3]), ArcSin[Sq 
rt[(1 - (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/(-2 + (-1)^(1/3)))) 
/Sqrt[-1 + x^3]
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {2564, 27, 760, 2563, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{(x+2) \sqrt {x^3-1}} \, dx\)

\(\Big \downarrow \) 2564

\(\displaystyle \frac {1}{3} \int \frac {1}{\sqrt {x^3-1}}dx-\frac {1}{3} \int \frac {2 (1-x)}{(x+2) \sqrt {x^3-1}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {1}{\sqrt {x^3-1}}dx-\frac {2}{3} \int \frac {1-x}{(x+2) \sqrt {x^3-1}}dx\)

\(\Big \downarrow \) 760

\(\displaystyle -\frac {2}{3} \int \frac {1-x}{(x+2) \sqrt {x^3-1}}dx-\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\)

\(\Big \downarrow \) 2563

\(\displaystyle \frac {4}{3} \int \frac {1}{\frac {(1-x)^4}{x^3-1}+9}d\frac {(1-x)^2}{\sqrt {x^3-1}}-\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {4}{9} \arctan \left (\frac {(1-x)^2}{3 \sqrt {x^3-1}}\right )-\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{3 \sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\)

Input:

Int[x/((2 + x)*Sqrt[-1 + x^3]),x]
 

Output:

(4*ArcTan[(1 - x)^2/(3*Sqrt[-1 + x^3])])/9 - (2*Sqrt[2 - Sqrt[3]]*(1 - x)* 
Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x) 
/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[-((1 - x)/(1 - Sqrt[ 
3] - x)^2)]*Sqrt[-1 + x^3])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 2563
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_ 
Symbol] :> Simp[-2*(e/d)   Subst[Int[1/(9 - a*x^2), x], x, (1 + f*(x/e))^2/ 
Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] & 
& EqQ[b*c^3 + 8*a*d^3, 0] && EqQ[2*d*e + c*f, 0]
 

rule 2564
Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x 
_Symbol] :> Simp[(2*d*e + c*f)/(3*c*d)   Int[1/Sqrt[a + b*x^3], x], x] + Si 
mp[(d*e - c*f)/(3*c*d)   Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x 
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && (EqQ[b*c^3 - 4*a* 
d^3, 0] || EqQ[b*c^3 + 8*a*d^3, 0]) && NeQ[2*d*e + c*f, 0]
 
Maple [A] (verified)

Time = 0.55 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.62

method result size
default \(\frac {2 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}-\frac {4 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticPi}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {i \sqrt {3}}{6}+\frac {1}{2}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {x^{3}-1}}\) \(240\)
elliptic \(\frac {2 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}-\frac {4 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticPi}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {i \sqrt {3}}{6}+\frac {1}{2}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {x^{3}-1}}\) \(240\)

Input:

int(x/(2+x)/(x^3-1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2*(-3/2-1/2*I*3^(1/2))*((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^ 
(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2 
)))^(1/2)/(x^3-1)^(1/2)*EllipticF(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),((3/2 
+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))-4/3*(-3/2-1/2*I*3^(1/2))*((x-1 
)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^ 
(1/2)*((x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)*Elli 
pticPi(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),1/6*I*3^(1/2)+1/2,((3/2+1/2*I*3^ 
(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.32 \[ \int \frac {x}{(2+x) \sqrt {-1+x^3}} \, dx=\frac {2}{9} \, \arctan \left (\frac {{\left (x^{3} - 12 \, x^{2} - 6 \, x - 10\right )} \sqrt {x^{3} - 1}}{6 \, {\left (x^{4} - x^{3} - x + 1\right )}}\right ) + \frac {2}{3} \, {\rm weierstrassPInverse}\left (0, 4, x\right ) \] Input:

integrate(x/(2+x)/(x^3-1)^(1/2),x, algorithm="fricas")
 

Output:

2/9*arctan(1/6*(x^3 - 12*x^2 - 6*x - 10)*sqrt(x^3 - 1)/(x^4 - x^3 - x + 1) 
) + 2/3*weierstrassPInverse(0, 4, x)
 

Sympy [F]

\[ \int \frac {x}{(2+x) \sqrt {-1+x^3}} \, dx=\int \frac {x}{\sqrt {\left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x + 2\right )}\, dx \] Input:

integrate(x/(2+x)/(x**3-1)**(1/2),x)
 

Output:

Integral(x/(sqrt((x - 1)*(x**2 + x + 1))*(x + 2)), x)
 

Maxima [F]

\[ \int \frac {x}{(2+x) \sqrt {-1+x^3}} \, dx=\int { \frac {x}{\sqrt {x^{3} - 1} {\left (x + 2\right )}} \,d x } \] Input:

integrate(x/(2+x)/(x^3-1)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x/(sqrt(x^3 - 1)*(x + 2)), x)
 

Giac [F]

\[ \int \frac {x}{(2+x) \sqrt {-1+x^3}} \, dx=\int { \frac {x}{\sqrt {x^{3} - 1} {\left (x + 2\right )}} \,d x } \] Input:

integrate(x/(2+x)/(x^3-1)^(1/2),x, algorithm="giac")
 

Output:

integrate(x/(sqrt(x^3 - 1)*(x + 2)), x)
 

Mupad [B] (verification not implemented)

Time = 22.76 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.41 \[ \int \frac {x}{(2+x) \sqrt {-1+x^3}} \, dx=-\frac {\left (3+\sqrt {3}\,1{}\mathrm {i}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\left (3\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )-2\,\Pi \left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\right )}{3\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \] Input:

int(x/((x^3 - 1)^(1/2)*(x + 2)),x)
 

Output:

-((3^(1/2)*1i + 3)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1 
/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/(( 
3^(1/2)*1i)/2 + 3/2))^(1/2)*(3*ellipticF(asin((-(x - 1)/((3^(1/2)*1i)/2 + 
3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)) - 2*elliptic 
Pi((3^(1/2)*1i)/6 + 1/2, asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -( 
(3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2))))/(3*(((3^(1/2)*1i)/2 - 1/2) 
*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) 
 + 1) + x^3)^(1/2))
 

Reduce [F]

\[ \int \frac {x}{(2+x) \sqrt {-1+x^3}} \, dx=\int \frac {\sqrt {x^{3}-1}\, x}{x^{4}+2 x^{3}-x -2}d x \] Input:

int(x/(2+x)/(x^3-1)^(1/2),x)
 

Output:

int((sqrt(x**3 - 1)*x)/(x**4 + 2*x**3 - x - 2),x)