\(\int \frac {x}{(1+\sqrt {3}+x) \sqrt {1+x^3}} \, dx\) [181]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 136 \[ \int \frac {x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {3+2 \sqrt {3}} (1+x)}{\sqrt {1+x^3}}\right )}{3^{3/4}}+\frac {\sqrt {2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{3^{3/4} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \] Output:

-1/3*2^(1/2)*arctan((3+2*3^(1/2))^(1/2)*(1+x)/(x^3+1)^(1/2))*3^(1/4)+1/3*2 
^(1/2)*(1+x)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*EllipticF((1+x-3^(1/2))/(1+ 
x+3^(1/2)),I*3^(1/2)+2*I)*3^(1/4)/((1+x)/(1+x+3^(1/2))^2)^(1/2)/(x^3+1)^(1 
/2)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.42 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.54 \[ \int \frac {x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\frac {2 \sqrt {\frac {1+x}{1+\sqrt [3]{-1}}} \left (-\frac {\left (\sqrt [3]{-1}-x\right ) \sqrt {\frac {\sqrt [3]{-1}-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right ),\sqrt [3]{-1}\right )}{\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}}+\frac {2 i \left (1+\sqrt {3}\right ) \sqrt {1-x+x^2} \operatorname {EllipticPi}\left (\frac {2 i \sqrt {3}}{3+(2+i) \sqrt {3}},\arcsin \left (\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right ),\sqrt [3]{-1}\right )}{3+(2+i) \sqrt {3}}\right )}{\sqrt {1+x^3}} \] Input:

Integrate[x/((1 + Sqrt[3] + x)*Sqrt[1 + x^3]),x]
 

Output:

(2*Sqrt[(1 + x)/(1 + (-1)^(1/3))]*(-((((-1)^(1/3) - x)*Sqrt[((-1)^(1/3) - 
(-1)^(2/3)*x)/(1 + (-1)^(1/3))]*EllipticF[ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/( 
1 + (-1)^(1/3))]], (-1)^(1/3)])/Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]) 
 + ((2*I)*(1 + Sqrt[3])*Sqrt[1 - x + x^2]*EllipticPi[((2*I)*Sqrt[3])/(3 + 
(2 + I)*Sqrt[3]), ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^ 
(1/3)])/(3 + (2 + I)*Sqrt[3])))/Sqrt[1 + x^3]
 

Rubi [A] (warning: unable to verify)

Time = 0.73 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.30, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {2566, 27, 759, 2565, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\left (x+\sqrt {3}+1\right ) \sqrt {x^3+1}} \, dx\)

\(\Big \downarrow \) 2566

\(\displaystyle \frac {\left (2-\sqrt {3}\right ) \int \frac {1}{\sqrt {x^3+1}}dx}{3-\sqrt {3}}+\frac {\int \frac {6 \left (x-\sqrt {3}+1\right )}{\left (x+\sqrt {3}+1\right ) \sqrt {x^3+1}}dx}{6 \left (3-\sqrt {3}\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (2-\sqrt {3}\right ) \int \frac {1}{\sqrt {x^3+1}}dx}{3-\sqrt {3}}+\frac {\int \frac {x-\sqrt {3}+1}{\left (x+\sqrt {3}+1\right ) \sqrt {x^3+1}}dx}{3-\sqrt {3}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {\int \frac {x-\sqrt {3}+1}{\left (x+\sqrt {3}+1\right ) \sqrt {x^3+1}}dx}{3-\sqrt {3}}+\frac {2 \left (2-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (3-\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 2565

\(\displaystyle \frac {2 \left (2-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (3-\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {2 \int \frac {1}{\frac {\left (3+2 \sqrt {3}\right ) (x+1)^2}{x^3+1}+1}d\frac {x+1}{\sqrt {x^3+1}}}{3-\sqrt {3}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {2 \left (2-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (3-\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {2 \arctan \left (\frac {\sqrt {3+2 \sqrt {3}} (x+1)}{\sqrt {x^3+1}}\right )}{\left (3-\sqrt {3}\right ) \sqrt {3+2 \sqrt {3}}}\)

Input:

Int[x/((1 + Sqrt[3] + x)*Sqrt[1 + x^3]),x]
 

Output:

(-2*ArcTan[(Sqrt[3 + 2*Sqrt[3]]*(1 + x))/Sqrt[1 + x^3]])/((3 - Sqrt[3])*Sq 
rt[3 + 2*Sqrt[3]]) + (2*(2 - Sqrt[3])*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - 
x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt 
[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*(3 - Sqrt[3])*Sqrt[(1 + x)/(1 + Sqrt[ 
3] + x)^2]*Sqrt[1 + x^3])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2565
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_ 
Symbol] :> With[{k = Simplify[(d*e + 2*c*f)/(c*f)]}, Simp[(1 + k)*(e/d)   S 
ubst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + (1 + k)*d*(x/c))/Sqrt[a + b*x 
^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c 
^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^ 
3), 0]
 

rule 2566
Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x 
_Symbol] :> Simp[-(6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3))/(c*d*(b*c^3 - 28*a*d 
^3))   Int[1/Sqrt[a + b*x^3], x], x] + Simp[(d*e - c*f)/(c*d*(b*c^3 - 28*a* 
d^3))   Int[(c*(b*c^3 - 22*a*d^3) + 6*a*d^4*x)/((c + d*x)*Sqrt[a + b*x^3]), 
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 
 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && NeQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3) 
, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 254 vs. \(2 (108 ) = 216\).

Time = 1.62 (sec) , antiderivative size = 255, normalized size of antiderivative = 1.88

method result size
default \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}+\frac {2 \left (-1-\sqrt {3}\right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {3}\, \operatorname {EllipticPi}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}{3}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {x^{3}+1}}\) \(255\)
elliptic \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}+\frac {2 \left (-1-\sqrt {3}\right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {3}\, \operatorname {EllipticPi}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}{3}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {x^{3}+1}}\) \(255\)

Input:

int(x/(1+3^(1/2)+x)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1 
/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2 
)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2 
+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+2/3*(-1-3^(1/2))*(3/2-1/2*I*3 
^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2 
*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3 
+1)^(1/2)*3^(1/2)*EllipticPi(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),1/3*(-3/2+1 
/2*I*3^(1/2))*3^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.43 \[ \int \frac {x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=-\frac {1}{3} \, {\left (\sqrt {3} - 3\right )} {\rm weierstrassPInverse}\left (0, -4, x\right ) - \frac {1}{6} \cdot 3^{\frac {1}{4}} \sqrt {2} \arctan \left (-\frac {3^{\frac {1}{4}} \sqrt {2} {\left (3 \, x^{2} - \sqrt {3} {\left (x^{2} + 2 \, x + 4\right )} - 6 \, x\right )}}{12 \, \sqrt {x^{3} + 1}}\right ) \] Input:

integrate(x/(1+3^(1/2)+x)/(x^3+1)^(1/2),x, algorithm="fricas")
 

Output:

-1/3*(sqrt(3) - 3)*weierstrassPInverse(0, -4, x) - 1/6*3^(1/4)*sqrt(2)*arc 
tan(-1/12*3^(1/4)*sqrt(2)*(3*x^2 - sqrt(3)*(x^2 + 2*x + 4) - 6*x)/sqrt(x^3 
 + 1))
 

Sympy [F]

\[ \int \frac {x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\int \frac {x}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x + 1 + \sqrt {3}\right )}\, dx \] Input:

integrate(x/(1+3**(1/2)+x)/(x**3+1)**(1/2),x)
 

Output:

Integral(x/(sqrt((x + 1)*(x**2 - x + 1))*(x + 1 + sqrt(3))), x)
 

Maxima [F]

\[ \int \frac {x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\int { \frac {x}{\sqrt {x^{3} + 1} {\left (x + \sqrt {3} + 1\right )}} \,d x } \] Input:

integrate(x/(1+3^(1/2)+x)/(x^3+1)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)), x)
 

Giac [F]

\[ \int \frac {x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\int { \frac {x}{\sqrt {x^{3} + 1} {\left (x + \sqrt {3} + 1\right )}} \,d x } \] Input:

integrate(x/(1+3^(1/2)+x)/(x^3+1)^(1/2),x, algorithm="giac")
 

Output:

integrate(x/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\text {Hanged} \] Input:

int(x/((x^3 + 1)^(1/2)*(x + 3^(1/2) + 1)),x)
 

Output:

\text{Hanged}
 

Reduce [F]

\[ \int \frac {x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\frac {\sqrt {3}\, \left (\int \frac {\sqrt {x^{3}+1}\, x^{2}}{x^{5}+2 x^{4}-2 x^{3}+x^{2}+2 x -2}d x \right )+\sqrt {3}\, \left (\int \frac {\sqrt {x^{3}+1}\, x}{x^{5}+2 x^{4}-2 x^{3}+x^{2}+2 x -2}d x \right )-3 \left (\int \frac {\sqrt {x^{3}+1}\, x}{x^{5}+2 x^{4}-2 x^{3}+x^{2}+2 x -2}d x \right )}{\sqrt {3}} \] Input:

int(x/(1+3^(1/2)+x)/(x^3+1)^(1/2),x)
 

Output:

(sqrt(3)*int((sqrt(x**3 + 1)*x**2)/(x**5 + 2*x**4 - 2*x**3 + x**2 + 2*x - 
2),x) + sqrt(3)*int((sqrt(x**3 + 1)*x)/(x**5 + 2*x**4 - 2*x**3 + x**2 + 2* 
x - 2),x) - 3*int((sqrt(x**3 + 1)*x)/(x**5 + 2*x**4 - 2*x**3 + x**2 + 2*x 
- 2),x))/sqrt(3)