\(\int \frac {x}{(1-\sqrt {3}+x) \sqrt {1+x^3}} \, dx\) [185]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 147 \[ \int \frac {x}{\left (1-\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {-3+2 \sqrt {3}} (1+x)}{\sqrt {1+x^3}}\right )}{3^{3/4}}+\frac {2 \sqrt {\frac {7}{6}+\frac {2}{\sqrt {3}}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \] Output:

-1/3*2^(1/2)*arctanh((-3+2*3^(1/2))^(1/2)*(1+x)/(x^3+1)^(1/2))*3^(1/4)+2/3 
*(1/3*6^(1/2)+1/2*2^(1/2))*(1+x)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*Ellipti 
cF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*3^(3/4)/((1+x)/(1+x+3^(1/2)) 
^2)^(1/2)/(x^3+1)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.94 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.53 \[ \int \frac {x}{\left (1-\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\frac {2 \sqrt {\frac {1+x}{1+\sqrt [3]{-1}}} \left (\frac {\sqrt {\frac {\sqrt [3]{-1}-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} \left (3-(2+i) \sqrt {3}+\left (-3 i+(1+2 i) \sqrt {3}\right ) x\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right ),\sqrt [3]{-1}\right )}{\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}}-2 \left (-1+\sqrt {3}\right ) \sqrt {1-x+x^2} \operatorname {EllipticPi}\left (\frac {2 \sqrt {3}}{-3 i+(1+2 i) \sqrt {3}},\arcsin \left (\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right ),\sqrt [3]{-1}\right )\right )}{\left (-3 i+(1+2 i) \sqrt {3}\right ) \sqrt {1+x^3}} \] Input:

Integrate[x/((1 - Sqrt[3] + x)*Sqrt[1 + x^3]),x]
 

Output:

(2*Sqrt[(1 + x)/(1 + (-1)^(1/3))]*((Sqrt[((-1)^(1/3) - (-1)^(2/3)*x)/(1 + 
(-1)^(1/3))]*(3 - (2 + I)*Sqrt[3] + (-3*I + (1 + 2*I)*Sqrt[3])*x)*Elliptic 
F[ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/Sqrt[(1 
+ (-1)^(2/3)*x)/(1 + (-1)^(1/3))] - 2*(-1 + Sqrt[3])*Sqrt[1 - x + x^2]*Ell 
ipticPi[(2*Sqrt[3])/(-3*I + (1 + 2*I)*Sqrt[3]), ArcSin[Sqrt[(1 + (-1)^(2/3 
)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)]))/((-3*I + (1 + 2*I)*Sqrt[3])*Sqrt[1 
+ x^3])
 

Rubi [A] (warning: unable to verify)

Time = 0.77 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.12, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2566, 27, 759, 2565, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\left (x-\sqrt {3}+1\right ) \sqrt {x^3+1}} \, dx\)

\(\Big \downarrow \) 2566

\(\displaystyle \frac {\left (2+\sqrt {3}\right ) \int \frac {1}{\sqrt {x^3+1}}dx}{3+\sqrt {3}}+\frac {\int \frac {6 \left (x+\sqrt {3}+1\right )}{\left (x-\sqrt {3}+1\right ) \sqrt {x^3+1}}dx}{6 \left (3+\sqrt {3}\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (2+\sqrt {3}\right ) \int \frac {1}{\sqrt {x^3+1}}dx}{3+\sqrt {3}}+\frac {\int \frac {x+\sqrt {3}+1}{\left (x-\sqrt {3}+1\right ) \sqrt {x^3+1}}dx}{3+\sqrt {3}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {\int \frac {x+\sqrt {3}+1}{\left (x-\sqrt {3}+1\right ) \sqrt {x^3+1}}dx}{3+\sqrt {3}}+\frac {2 \left (2+\sqrt {3}\right )^{3/2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (3+\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 2565

\(\displaystyle \frac {2 \left (2+\sqrt {3}\right )^{3/2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (3+\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {2 \int \frac {1}{\frac {\left (3-2 \sqrt {3}\right ) (x+1)^2}{x^3+1}+1}d\frac {x+1}{\sqrt {x^3+1}}}{3+\sqrt {3}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 \left (2+\sqrt {3}\right )^{3/2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (3+\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {2 \sqrt {3}-3} (x+1)}{\sqrt {x^3+1}}\right )}{\left (3+\sqrt {3}\right ) \sqrt {2 \sqrt {3}-3}}\)

Input:

Int[x/((1 - Sqrt[3] + x)*Sqrt[1 + x^3]),x]
 

Output:

(-2*ArcTanh[(Sqrt[-3 + 2*Sqrt[3]]*(1 + x))/Sqrt[1 + x^3]])/((3 + Sqrt[3])* 
Sqrt[-3 + 2*Sqrt[3]]) + (2*(2 + Sqrt[3])^(3/2)*(1 + x)*Sqrt[(1 - x + x^2)/ 
(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)] 
, -7 - 4*Sqrt[3]])/(3^(1/4)*(3 + Sqrt[3])*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2 
]*Sqrt[1 + x^3])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2565
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_ 
Symbol] :> With[{k = Simplify[(d*e + 2*c*f)/(c*f)]}, Simp[(1 + k)*(e/d)   S 
ubst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + (1 + k)*d*(x/c))/Sqrt[a + b*x 
^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c 
^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^ 
3), 0]
 

rule 2566
Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x 
_Symbol] :> Simp[-(6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3))/(c*d*(b*c^3 - 28*a*d 
^3))   Int[1/Sqrt[a + b*x^3], x], x] + Simp[(d*e - c*f)/(c*d*(b*c^3 - 28*a* 
d^3))   Int[(c*(b*c^3 - 22*a*d^3) + 6*a*d^4*x)/((c + d*x)*Sqrt[a + b*x^3]), 
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 
 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && NeQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3) 
, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 252 vs. \(2 (116 ) = 232\).

Time = 1.61 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.72

method result size
default \(-\frac {2 \left (\sqrt {3}-1\right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {3}\, \operatorname {EllipticPi}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, -\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}{3}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {x^{3}+1}}+\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}\) \(253\)
elliptic \(-\frac {2 \left (\sqrt {3}-1\right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {3}\, \operatorname {EllipticPi}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, -\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}{3}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {x^{3}+1}}+\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}\) \(253\)

Input:

int(x/(1-3^(1/2)+x)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2/3*(3^(1/2)-1)*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x 
-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3 
/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*3^(1/2)*EllipticPi(((x+1)/(3/2-1/2* 
I*3^(1/2)))^(1/2),-1/3*(-3/2+1/2*I*3^(1/2))*3^(1/2),((-3/2+1/2*I*3^(1/2))/ 
(-3/2-1/2*I*3^(1/2)))^(1/2))+2*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/ 
2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2* 
I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((x+1)/(3/2 
-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.46 \[ \int \frac {x}{\left (1-\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\frac {1}{3} \, {\left (\sqrt {3} + 3\right )} {\rm weierstrassPInverse}\left (0, -4, x\right ) + \frac {1}{12} \cdot 3^{\frac {1}{4}} \sqrt {2} \log \left (\frac {x^{8} - 16 \, x^{7} + 112 \, x^{6} - 16 \, x^{5} + 112 \, x^{4} + 224 \, x^{3} + 2 \cdot 3^{\frac {1}{4}} \sqrt {2} {\left (x^{6} - 18 \, x^{5} + 12 \, x^{4} - 40 \, x^{3} - 36 \, x^{2} - \sqrt {3} {\left (x^{6} - 6 \, x^{5} + 24 \, x^{4} + 8 \, x^{3} + 12 \, x^{2} + 24 \, x + 16\right )} - 24 \, x - 32\right )} \sqrt {x^{3} + 1} + 64 \, x^{2} + 16 \, \sqrt {3} {\left (x^{7} - 2 \, x^{6} + 6 \, x^{5} + 5 \, x^{4} + 2 \, x^{3} + 6 \, x^{2} + 4 \, x + 4\right )} + 128 \, x + 112}{x^{8} + 8 \, x^{7} + 16 \, x^{6} - 16 \, x^{5} - 56 \, x^{4} + 32 \, x^{3} + 64 \, x^{2} - 64 \, x + 16}\right ) \] Input:

integrate(x/(1-3^(1/2)+x)/(x^3+1)^(1/2),x, algorithm="fricas")
 

Output:

1/3*(sqrt(3) + 3)*weierstrassPInverse(0, -4, x) + 1/12*3^(1/4)*sqrt(2)*log 
((x^8 - 16*x^7 + 112*x^6 - 16*x^5 + 112*x^4 + 224*x^3 + 2*3^(1/4)*sqrt(2)* 
(x^6 - 18*x^5 + 12*x^4 - 40*x^3 - 36*x^2 - sqrt(3)*(x^6 - 6*x^5 + 24*x^4 + 
 8*x^3 + 12*x^2 + 24*x + 16) - 24*x - 32)*sqrt(x^3 + 1) + 64*x^2 + 16*sqrt 
(3)*(x^7 - 2*x^6 + 6*x^5 + 5*x^4 + 2*x^3 + 6*x^2 + 4*x + 4) + 128*x + 112) 
/(x^8 + 8*x^7 + 16*x^6 - 16*x^5 - 56*x^4 + 32*x^3 + 64*x^2 - 64*x + 16))
 

Sympy [F]

\[ \int \frac {x}{\left (1-\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\int \frac {x}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x - \sqrt {3} + 1\right )}\, dx \] Input:

integrate(x/(1-3**(1/2)+x)/(x**3+1)**(1/2),x)
 

Output:

Integral(x/(sqrt((x + 1)*(x**2 - x + 1))*(x - sqrt(3) + 1)), x)
 

Maxima [F]

\[ \int \frac {x}{\left (1-\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\int { \frac {x}{\sqrt {x^{3} + 1} {\left (x - \sqrt {3} + 1\right )}} \,d x } \] Input:

integrate(x/(1-3^(1/2)+x)/(x^3+1)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x/(sqrt(x^3 + 1)*(x - sqrt(3) + 1)), x)
 

Giac [F]

\[ \int \frac {x}{\left (1-\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\int { \frac {x}{\sqrt {x^{3} + 1} {\left (x - \sqrt {3} + 1\right )}} \,d x } \] Input:

integrate(x/(1-3^(1/2)+x)/(x^3+1)^(1/2),x, algorithm="giac")
 

Output:

integrate(x/(sqrt(x^3 + 1)*(x - sqrt(3) + 1)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\left (1-\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\text {Hanged} \] Input:

int(x/((x^3 + 1)^(1/2)*(x - 3^(1/2) + 1)),x)
 

Output:

\text{Hanged}
 

Reduce [F]

\[ \int \frac {x}{\left (1-\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx=\frac {\sqrt {3}\, \left (\int \frac {\sqrt {x^{3}+1}\, x^{2}}{x^{5}+2 x^{4}-2 x^{3}+x^{2}+2 x -2}d x \right )+\sqrt {3}\, \left (\int \frac {\sqrt {x^{3}+1}\, x}{x^{5}+2 x^{4}-2 x^{3}+x^{2}+2 x -2}d x \right )+3 \left (\int \frac {\sqrt {x^{3}+1}\, x}{x^{5}+2 x^{4}-2 x^{3}+x^{2}+2 x -2}d x \right )}{\sqrt {3}} \] Input:

int(x/(1-3^(1/2)+x)/(x^3+1)^(1/2),x)
 

Output:

(sqrt(3)*int((sqrt(x**3 + 1)*x**2)/(x**5 + 2*x**4 - 2*x**3 + x**2 + 2*x - 
2),x) + sqrt(3)*int((sqrt(x**3 + 1)*x)/(x**5 + 2*x**4 - 2*x**3 + x**2 + 2* 
x - 2),x) + 3*int((sqrt(x**3 + 1)*x)/(x**5 + 2*x**4 - 2*x**3 + x**2 + 2*x 
- 2),x))/sqrt(3)