\(\int \frac {1-\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx\) [194]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 358 \[ \int \frac {1-\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx=-\frac {\left (c-\left (1-\sqrt {3}\right ) d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} \text {arctanh}\left (\frac {2 \sqrt {2+\sqrt {3}} \sqrt {c^2+c d+d^2} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}}}{\sqrt {c-d} \sqrt {d} \sqrt {7+4 \sqrt {3}+\frac {\left (1+\sqrt {3}+x\right )^2}{\left (1-\sqrt {3}+x\right )^2}}}\right )}{\sqrt {c-d} \sqrt {d} \sqrt {c^2+c d+d^2} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}-\frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2}{\left (c-\left (1+\sqrt {3}\right ) d\right )^2},\arcsin \left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right ),-7+4 \sqrt {3}\right )}{\left (c-d-\sqrt {3} d\right ) \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \] Output:

-(c-(1-3^(1/2))*d)*(1+x)*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)*arctanh(2*(1/2* 
6^(1/2)+1/2*2^(1/2))*(c^2+c*d+d^2)^(1/2)*(-(1+x)/(1+x-3^(1/2))^2)^(1/2)/(c 
-d)^(1/2)/d^(1/2)/(7+4*3^(1/2)+(1+x+3^(1/2))^2/(1+x-3^(1/2))^2)^(1/2))/(c- 
d)^(1/2)/d^(1/2)/(c^2+c*d+d^2)^(1/2)/(-(1+x)/(1+x-3^(1/2))^2)^(1/2)/(x^3+1 
)^(1/2)-4*3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*(1+x)*((x^2-x+1)/(1+x-3^(1/2)) 
^2)^(1/2)*EllipticPi((1+x+3^(1/2))/(1+x-3^(1/2)),(c-(1-3^(1/2))*d)^2/(c-(1 
+3^(1/2))*d)^2,2*I-I*3^(1/2))/(-3^(1/2)*d+c-d)/(-(1+x)/(1+x-3^(1/2))^2)^(1 
/2)/(x^3+1)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.69 (sec) , antiderivative size = 213, normalized size of antiderivative = 0.59 \[ \int \frac {1-\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx=\frac {2 \sqrt {\frac {1+x}{1+\sqrt [3]{-1}}} \left (-\frac {\left (\sqrt [3]{-1}-x\right ) \sqrt {\frac {\sqrt [3]{-1}-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right ),\sqrt [3]{-1}\right )}{\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}}+\frac {i \left (c+\left (-1+\sqrt {3}\right ) d\right ) \sqrt {1-x+x^2} \operatorname {EllipticPi}\left (\frac {i \sqrt {3} d}{c+\sqrt [3]{-1} d},\arcsin \left (\sqrt {\frac {1+(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right ),\sqrt [3]{-1}\right )}{c+\sqrt [3]{-1} d}\right )}{d \sqrt {1+x^3}} \] Input:

Integrate[(1 - Sqrt[3] + x)/((c + d*x)*Sqrt[1 + x^3]),x]
 

Output:

(2*Sqrt[(1 + x)/(1 + (-1)^(1/3))]*(-((((-1)^(1/3) - x)*Sqrt[((-1)^(1/3) - 
(-1)^(2/3)*x)/(1 + (-1)^(1/3))]*EllipticF[ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/( 
1 + (-1)^(1/3))]], (-1)^(1/3)])/Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]) 
 + (I*(c + (-1 + Sqrt[3])*d)*Sqrt[1 - x + x^2]*EllipticPi[(I*Sqrt[3]*d)/(c 
 + (-1)^(1/3)*d), ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^ 
(1/3)])/(c + (-1)^(1/3)*d)))/(d*Sqrt[1 + x^3])
 

Rubi [A] (warning: unable to verify)

Time = 1.70 (sec) , antiderivative size = 309, normalized size of antiderivative = 0.86, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {2568, 25, 2538, 412, 435, 104, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x-\sqrt {3}+1}{\sqrt {x^3+1} (c+d x)} \, dx\)

\(\Big \downarrow \) 2568

\(\displaystyle -\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \int -\frac {1}{\left (c-\sqrt {3} d-d-\frac {\left (c-\left (1-\sqrt {3}\right ) d\right ) \left (x+\sqrt {3}+1\right )}{x-\sqrt {3}+1}\right ) \sqrt {1-\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}+4 \sqrt {3}+7}}d\left (-\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \int \frac {1}{\left (c-\left (1+\sqrt {3}\right ) d-\frac {\left (c-\left (1-\sqrt {3}\right ) d\right ) \left (x+\sqrt {3}+1\right )}{x-\sqrt {3}+1}\right ) \sqrt {1-\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}+4 \sqrt {3}+7}}d\left (-\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 2538

\(\displaystyle -\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \left (\left (c-\left (1-\sqrt {3}\right ) d\right ) \int -\frac {x+\sqrt {3}+1}{\left (x-\sqrt {3}+1\right ) \sqrt {1-\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}+4 \sqrt {3}+7} \left (\left (c-\left (1+\sqrt {3}\right ) d\right )^2-\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2 \left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}\right )}d\left (-\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )-\left (c-\left (1+\sqrt {3}\right ) d\right ) \int \frac {1}{\sqrt {1-\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}+4 \sqrt {3}+7} \left (\left (c-\left (1+\sqrt {3}\right ) d\right )^2-\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2 \left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}\right )}d\left (-\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 412

\(\displaystyle -\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \left (\left (c-\left (1-\sqrt {3}\right ) d\right ) \int -\frac {x+\sqrt {3}+1}{\left (x-\sqrt {3}+1\right ) \sqrt {1-\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}+4 \sqrt {3}+7} \left (\left (c-\left (1+\sqrt {3}\right ) d\right )^2-\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2 \left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}\right )}d\left (-\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )+\frac {\left (c-\left (1+\sqrt {3}\right ) d\right ) \operatorname {EllipticPi}\left (\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2}{\left (c-\left (1+\sqrt {3}\right ) d\right )^2},\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt {7+4 \sqrt {3}} \left (c-\sqrt {3} d-d\right )^2}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 435

\(\displaystyle -\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \left (\frac {1}{2} \left (c-\left (1-\sqrt {3}\right ) d\right ) \int \frac {1}{\sqrt {\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}+1} \left (\frac {\left (x+\sqrt {3}+1\right ) \left (c-\left (1-\sqrt {3}\right ) d\right )^2}{x-\sqrt {3}+1}+\left (c-\left (1+\sqrt {3}\right ) d\right )^2\right ) \sqrt {\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}+4 \sqrt {3}+7}}d\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}+\frac {\left (c-\left (1+\sqrt {3}\right ) d\right ) \operatorname {EllipticPi}\left (\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2}{\left (c-\left (1+\sqrt {3}\right ) d\right )^2},\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt {7+4 \sqrt {3}} \left (c-\sqrt {3} d-d\right )^2}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \left (\left (c-\left (1-\sqrt {3}\right ) d\right ) \int \frac {1}{4 \sqrt {3} (c-d) d-\frac {4 \left (2+\sqrt {3}\right ) \left (c^2+d c+d^2\right ) \sqrt {\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}+1}}{\sqrt {\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}+4 \sqrt {3}+7}}}d\frac {\sqrt {\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}+1}}{\sqrt {\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}+4 \sqrt {3}+7}}+\frac {\left (c-\left (1+\sqrt {3}\right ) d\right ) \operatorname {EllipticPi}\left (\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2}{\left (c-\left (1+\sqrt {3}\right ) d\right )^2},\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt {7+4 \sqrt {3}} \left (c-\sqrt {3} d-d\right )^2}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \left (\frac {\left (c-\left (1+\sqrt {3}\right ) d\right ) \operatorname {EllipticPi}\left (\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2}{\left (c-\left (1+\sqrt {3}\right ) d\right )^2},\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt {7+4 \sqrt {3}} \left (c-\sqrt {3} d-d\right )^2}-\frac {\left (c-\left (1-\sqrt {3}\right ) d\right ) \text {arctanh}\left (\frac {\sqrt {2+\sqrt {3}} \left (x+\sqrt {3}+1\right ) \sqrt {c^2+c d+d^2}}{\sqrt [4]{3} \sqrt {d} \left (x-\sqrt {3}+1\right ) \sqrt {c-d}}\right )}{4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} \sqrt {d} \sqrt {c-d} \sqrt {c^2+c d+d^2}}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

Input:

Int[(1 - Sqrt[3] + x)/((c + d*x)*Sqrt[1 + x^3]),x]
 

Output:

(-4*3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3] + x) 
^2]*(-1/4*((c - (1 - Sqrt[3])*d)*ArcTanh[(Sqrt[2 + Sqrt[3]]*Sqrt[c^2 + c*d 
 + d^2]*(1 + Sqrt[3] + x))/(3^(1/4)*Sqrt[c - d]*Sqrt[d]*(1 - Sqrt[3] + x)) 
])/(3^(1/4)*Sqrt[2 + Sqrt[3]]*Sqrt[c - d]*Sqrt[d]*Sqrt[c^2 + c*d + d^2]) + 
 ((c - (1 + Sqrt[3])*d)*EllipticPi[(c - (1 - Sqrt[3])*d)^2/(c - (1 + Sqrt[ 
3])*d)^2, ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(S 
qrt[7 + 4*Sqrt[3]]*(c - d - Sqrt[3]*d)^2)))/(Sqrt[-((1 + x)/(1 - Sqrt[3] + 
 x)^2)]*Sqrt[1 + x^3])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 412
Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x 
_)^2]), x_Symbol] :> Simp[(1/(a*Sqrt[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b* 
(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, 
 f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && S 
implerSqrtQ[-f/e, -d/c])
 

rule 435
Int[(x_)^(m_.)*((a_.) + (b_.)*(x_)^2)^(p_.)*((c_.) + (d_.)*(x_)^2)^(q_.)*(( 
e_.) + (f_.)*(x_)^2)^(r_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2) 
*(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^2], x] /; FreeQ[{a, b, c, d, 
 e, f, p, q, r}, x] && IntegerQ[(m - 1)/2]
 

rule 2538
Int[1/(((a_) + (b_.)*(x_))*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_) 
^2]), x_Symbol] :> Simp[a   Int[1/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + 
 f*x^2]), x], x] - Simp[b   Int[x/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + 
 f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
 

rule 2568
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_ 
Symbol] :> With[{q = Simplify[(-1 + Sqrt[3])*(f/e)]}, Simp[4*3^(1/4)*Sqrt[2 
 + Sqrt[3]]*f*(1 - q*x)*(Sqrt[(1 + q*x + q^2*x^2)/(1 - Sqrt[3] - q*x)^2]/(q 
*Sqrt[a + b*x^3]*Sqrt[-(1 - q*x)/(1 - Sqrt[3] - q*x)^2]))   Subst[Int[1/((( 
1 + Sqrt[3])*d + c*q + ((1 - Sqrt[3])*d + c*q)*x)*Sqrt[1 - x^2]*Sqrt[7 + 4* 
Sqrt[3] + x^2]), x], x, (1 + Sqrt[3] - q*x)/(-1 + Sqrt[3] + q*x)], x]] /; F 
reeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b*e^3 - 2*(5 - 3*Sq 
rt[3])*a*f^3, 0] && NeQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
Maple [A] (verified)

Time = 0.48 (sec) , antiderivative size = 275, normalized size of antiderivative = 0.77

method result size
default \(-\frac {2 \left (\sqrt {3}\, d +c -d \right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticPi}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-1+\frac {c}{d}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{d^{2} \sqrt {x^{3}+1}\, \left (-1+\frac {c}{d}\right )}+\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{d \sqrt {x^{3}+1}}\) \(275\)
elliptic \(-\frac {2 \left (\sqrt {3}\, d +c -d \right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticPi}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-1+\frac {c}{d}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{d^{2} \sqrt {x^{3}+1}\, \left (-1+\frac {c}{d}\right )}+\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{d \sqrt {x^{3}+1}}\) \(275\)

Input:

int((1-3^(1/2)+x)/(d*x+c)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2*(3^(1/2)*d+c-d)/d^2*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/ 
2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2 
))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)/(-1+c/d)*EllipticPi(((x+1)/(3 
/2-1/2*I*3^(1/2)))^(1/2),(-3/2+1/2*I*3^(1/2))/(-1+c/d),((-3/2+1/2*I*3^(1/2 
))/(-3/2-1/2*I*3^(1/2)))^(1/2))+2/d*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I* 
3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2 
+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((x+1) 
/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1 
/2))
 

Fricas [F]

\[ \int \frac {1-\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx=\int { \frac {x - \sqrt {3} + 1}{\sqrt {x^{3} + 1} {\left (d x + c\right )}} \,d x } \] Input:

integrate((1-3^(1/2)+x)/(d*x+c)/(x^3+1)^(1/2),x, algorithm="fricas")
 

Output:

integral(sqrt(x^3 + 1)*(x - sqrt(3) + 1)/(d*x^4 + c*x^3 + d*x + c), x)
 

Sympy [F]

\[ \int \frac {1-\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx=\int \frac {x - \sqrt {3} + 1}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (c + d x\right )}\, dx \] Input:

integrate((1-3**(1/2)+x)/(d*x+c)/(x**3+1)**(1/2),x)
 

Output:

Integral((x - sqrt(3) + 1)/(sqrt((x + 1)*(x**2 - x + 1))*(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {1-\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx=\int { \frac {x - \sqrt {3} + 1}{\sqrt {x^{3} + 1} {\left (d x + c\right )}} \,d x } \] Input:

integrate((1-3^(1/2)+x)/(d*x+c)/(x^3+1)^(1/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate((x - sqrt(3) + 1)/(sqrt(x^3 + 1)*(d*x + c)), x)
 

Giac [F]

\[ \int \frac {1-\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx=\int { \frac {x - \sqrt {3} + 1}{\sqrt {x^{3} + 1} {\left (d x + c\right )}} \,d x } \] Input:

integrate((1-3^(1/2)+x)/(d*x+c)/(x^3+1)^(1/2),x, algorithm="giac")
 

Output:

integrate((x - sqrt(3) + 1)/(sqrt(x^3 + 1)*(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1-\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx=\text {Hanged} \] Input:

int((x - 3^(1/2) + 1)/((x^3 + 1)^(1/2)*(c + d*x)),x)
 

Output:

\text{Hanged}
 

Reduce [F]

\[ \int \frac {1-\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx=\int \frac {1-\sqrt {3}+x}{\left (d x +c \right ) \sqrt {x^{3}+1}}d x \] Input:

int((1-3^(1/2)+x)/(d*x+c)/(x^3+1)^(1/2),x)
 

Output:

int((1-3^(1/2)+x)/(d*x+c)/(x^3+1)^(1/2),x)