\(\int \frac {x^3 (e+f x)^n}{a+b x^3} \, dx\) [41]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 293 \[ \int \frac {x^3 (e+f x)^n}{a+b x^3} \, dx=\frac {(e+f x)^{1+n}}{b f (1+n)}+\frac {\sqrt [3]{a} (e+f x)^{1+n} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 b \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}+\frac {\sqrt [3]{a} (e+f x)^{1+n} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 b \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}-\frac {\sqrt [3]{a} (e+f x)^{1+n} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 b \left (\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f\right ) (1+n)} \] Output:

(f*x+e)^(1+n)/b/f/(1+n)+1/3*a^(1/3)*(f*x+e)^(1+n)*hypergeom([1, 1+n],[2+n] 
,b^(1/3)*(f*x+e)/(b^(1/3)*e-a^(1/3)*f))/b/(b^(1/3)*e-a^(1/3)*f)/(1+n)+1/3* 
a^(1/3)*(f*x+e)^(1+n)*hypergeom([1, 1+n],[2+n],(-1)^(2/3)*b^(1/3)*(f*x+e)/ 
((-1)^(2/3)*b^(1/3)*e-a^(1/3)*f))/b/((-1)^(2/3)*b^(1/3)*e-a^(1/3)*f)/(1+n) 
-1/3*a^(1/3)*(f*x+e)^(1+n)*hypergeom([1, 1+n],[2+n],(-1)^(1/3)*b^(1/3)*(f* 
x+e)/((-1)^(1/3)*b^(1/3)*e+a^(1/3)*f))/b/((-1)^(1/3)*b^(1/3)*e+a^(1/3)*f)/ 
(1+n)
 

Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 239, normalized size of antiderivative = 0.82 \[ \int \frac {x^3 (e+f x)^n}{a+b x^3} \, dx=\frac {(e+f x)^{1+n} \left (\frac {3}{f}+\frac {\sqrt [3]{a} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{\sqrt [3]{b} e-\sqrt [3]{a} f}+\frac {\sqrt [3]{a} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}-\frac {\sqrt [3]{a} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 b (1+n)} \] Input:

Integrate[(x^3*(e + f*x)^n)/(a + b*x^3),x]
 

Output:

((e + f*x)^(1 + n)*(3/f + (a^(1/3)*Hypergeometric2F1[1, 1 + n, 2 + n, (b^( 
1/3)*(e + f*x))/(b^(1/3)*e - a^(1/3)*f)])/(b^(1/3)*e - a^(1/3)*f) + (a^(1/ 
3)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(2/3)*b^(1/3)*(e + f*x))/((-1) 
^(2/3)*b^(1/3)*e - a^(1/3)*f)])/((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f) - (a^(1 
/3)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(1/3)*b^(1/3)*(e + f*x))/((-1 
)^(1/3)*b^(1/3)*e + a^(1/3)*f)])/((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)))/(3*b 
*(1 + n))
 

Rubi [A] (verified)

Time = 1.11 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 (e+f x)^n}{a+b x^3} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (\frac {(e+f x)^n}{b}-\frac {a (e+f x)^n}{b \left (a+b x^3\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt [3]{a} (e+f x)^{n+1} \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 b (n+1) \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac {\sqrt [3]{a} (e+f x)^{n+1} \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 b (n+1) \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right )}-\frac {\sqrt [3]{a} (e+f x)^{n+1} \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 b (n+1) \left (\sqrt [3]{a} f+\sqrt [3]{-1} \sqrt [3]{b} e\right )}+\frac {(e+f x)^{n+1}}{b f (n+1)}\)

Input:

Int[(x^3*(e + f*x)^n)/(a + b*x^3),x]
 

Output:

(e + f*x)^(1 + n)/(b*f*(1 + n)) + (a^(1/3)*(e + f*x)^(1 + n)*Hypergeometri 
c2F1[1, 1 + n, 2 + n, (b^(1/3)*(e + f*x))/(b^(1/3)*e - a^(1/3)*f)])/(3*b*( 
b^(1/3)*e - a^(1/3)*f)*(1 + n)) + (a^(1/3)*(e + f*x)^(1 + n)*Hypergeometri 
c2F1[1, 1 + n, 2 + n, ((-1)^(2/3)*b^(1/3)*(e + f*x))/((-1)^(2/3)*b^(1/3)*e 
 - a^(1/3)*f)])/(3*b*((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)*(1 + n)) - (a^(1/3 
)*(e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(1/3)*b^(1/3) 
*(e + f*x))/((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)])/(3*b*((-1)^(1/3)*b^(1/3)* 
e + a^(1/3)*f)*(1 + n))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
Maple [F]

\[\int \frac {x^{3} \left (f x +e \right )^{n}}{b \,x^{3}+a}d x\]

Input:

int(x^3*(f*x+e)^n/(b*x^3+a),x)
 

Output:

int(x^3*(f*x+e)^n/(b*x^3+a),x)
 

Fricas [F]

\[ \int \frac {x^3 (e+f x)^n}{a+b x^3} \, dx=\int { \frac {{\left (f x + e\right )}^{n} x^{3}}{b x^{3} + a} \,d x } \] Input:

integrate(x^3*(f*x+e)^n/(b*x^3+a),x, algorithm="fricas")
 

Output:

integral((f*x + e)^n*x^3/(b*x^3 + a), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 (e+f x)^n}{a+b x^3} \, dx=\text {Timed out} \] Input:

integrate(x**3*(f*x+e)**n/(b*x**3+a),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^3 (e+f x)^n}{a+b x^3} \, dx=\int { \frac {{\left (f x + e\right )}^{n} x^{3}}{b x^{3} + a} \,d x } \] Input:

integrate(x^3*(f*x+e)^n/(b*x^3+a),x, algorithm="maxima")
 

Output:

integrate((f*x + e)^n*x^3/(b*x^3 + a), x)
 

Giac [F]

\[ \int \frac {x^3 (e+f x)^n}{a+b x^3} \, dx=\int { \frac {{\left (f x + e\right )}^{n} x^{3}}{b x^{3} + a} \,d x } \] Input:

integrate(x^3*(f*x+e)^n/(b*x^3+a),x, algorithm="giac")
 

Output:

integrate((f*x + e)^n*x^3/(b*x^3 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 (e+f x)^n}{a+b x^3} \, dx=\int \frac {x^3\,{\left (e+f\,x\right )}^n}{b\,x^3+a} \,d x \] Input:

int((x^3*(e + f*x)^n)/(a + b*x^3),x)
 

Output:

int((x^3*(e + f*x)^n)/(a + b*x^3), x)
 

Reduce [F]

\[ \int \frac {x^3 (e+f x)^n}{a+b x^3} \, dx=\frac {\left (f x +e \right )^{n} e +\left (f x +e \right )^{n} f x -\left (\int \frac {\left (f x +e \right )^{n}}{b \,x^{3}+a}d x \right ) a f n -\left (\int \frac {\left (f x +e \right )^{n}}{b \,x^{3}+a}d x \right ) a f}{b f \left (n +1\right )} \] Input:

int(x^3*(f*x+e)^n/(b*x^3+a),x)
 

Output:

((e + f*x)**n*e + (e + f*x)**n*f*x - int((e + f*x)**n/(a + b*x**3),x)*a*f* 
n - int((e + f*x)**n/(a + b*x**3),x)*a*f)/(b*f*(n + 1))