\(\int \frac {x \sqrt {1+x^2}}{1-x^3} \, dx\) [55]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 79 \[ \int \frac {x \sqrt {1+x^2}}{1-x^3} \, dx=-\text {arcsinh}(x)-\frac {1}{3} \arctan \left (\frac {1+x}{\sqrt {1+x^2}}\right )-\frac {\text {arctanh}\left (\frac {1-x}{\sqrt {3} \sqrt {1+x^2}}\right )}{\sqrt {3}}+\frac {1}{3} \sqrt {2} \text {arctanh}\left (\frac {1+x}{\sqrt {2} \sqrt {1+x^2}}\right ) \] Output:

-arcsinh(x)-1/3*arctan((1+x)/(x^2+1)^(1/2))-1/3*arctanh(1/3*(1-x)*3^(1/2)/ 
(x^2+1)^(1/2))*3^(1/2)+1/3*2^(1/2)*arctanh(1/2*(1+x)*2^(1/2)/(x^2+1)^(1/2) 
)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.18 (sec) , antiderivative size = 161, normalized size of antiderivative = 2.04 \[ \int \frac {x \sqrt {1+x^2}}{1-x^3} \, dx=\frac {2}{3} \sqrt {2} \text {arctanh}\left (\frac {1-x+\sqrt {1+x^2}}{\sqrt {2}}\right )+\log \left (-x+\sqrt {1+x^2}\right )+\frac {2}{3} \text {RootSum}\left [1+2 \text {$\#$1}+2 \text {$\#$1}^2-2 \text {$\#$1}^3+\text {$\#$1}^4\&,\frac {-\log \left (-x+\sqrt {1+x^2}-\text {$\#$1}\right )-\log \left (-x+\sqrt {1+x^2}-\text {$\#$1}\right ) \text {$\#$1}+\log \left (-x+\sqrt {1+x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{1+2 \text {$\#$1}-3 \text {$\#$1}^2+2 \text {$\#$1}^3}\&\right ] \] Input:

Integrate[(x*Sqrt[1 + x^2])/(1 - x^3),x]
 

Output:

(2*Sqrt[2]*ArcTanh[(1 - x + Sqrt[1 + x^2])/Sqrt[2]])/3 + Log[-x + Sqrt[1 + 
 x^2]] + (2*RootSum[1 + 2*#1 + 2*#1^2 - 2*#1^3 + #1^4 & , (-Log[-x + Sqrt[ 
1 + x^2] - #1] - Log[-x + Sqrt[1 + x^2] - #1]*#1 + Log[-x + Sqrt[1 + x^2] 
- #1]*#1^2)/(1 + 2*#1 - 3*#1^2 + 2*#1^3) & ])/3
 

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \sqrt {x^2+1}}{1-x^3} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (\frac {(x-1) \sqrt {x^2+1}}{3 \left (x^2+x+1\right )}-\frac {\sqrt {x^2+1}}{3 (x-1)}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\text {arcsinh}(x)-\frac {1}{3} \arctan \left (\frac {x+1}{\sqrt {x^2+1}}\right )-\frac {\text {arctanh}\left (\frac {1-x}{\sqrt {3} \sqrt {x^2+1}}\right )}{\sqrt {3}}+\frac {1}{3} \sqrt {2} \text {arctanh}\left (\frac {x+1}{\sqrt {2} \sqrt {x^2+1}}\right )\)

Input:

Int[(x*Sqrt[1 + x^2])/(1 - x^3),x]
 

Output:

-ArcSinh[x] - ArcTan[(1 + x)/Sqrt[1 + x^2]]/3 - ArcTanh[(1 - x)/(Sqrt[3]*S 
qrt[1 + x^2])]/Sqrt[3] + (Sqrt[2]*ArcTanh[(1 + x)/(Sqrt[2]*Sqrt[1 + x^2])] 
)/3
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(321\) vs. \(2(63)=126\).

Time = 0.44 (sec) , antiderivative size = 322, normalized size of antiderivative = 4.08

method result size
default \(-\frac {\sqrt {\left (x -1\right )^{2}+2 x}}{3}-\operatorname {arcsinh}\left (x \right )+\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 x +2\right ) \sqrt {2}}{4 \sqrt {\left (x -1\right )^{2}+2 x}}\right )}{3}+\frac {\sqrt {x^{2}+1}}{3}-\frac {\sqrt {2}\, \sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (\sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \sqrt {3}}{2}\right )-\arctan \left (\frac {\sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (x +1\right )}{\left (\frac {\left (x +1\right )^{2}}{\left (1-x \right )^{2}}+1\right ) \left (1-x \right )}\right )\right )}{6 \sqrt {\frac {\frac {\left (x +1\right )^{2}}{\left (1-x \right )^{2}}+1}{\left (\frac {x +1}{1-x}+1\right )^{2}}}\, \left (\frac {x +1}{1-x}+1\right )}-\frac {\sqrt {2}\, \sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \arctan \left (\frac {\sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (x +1\right )}{\left (\frac {\left (x +1\right )^{2}}{\left (1-x \right )^{2}}+1\right ) \left (1-x \right )}\right )}{3 \sqrt {\frac {\frac {\left (x +1\right )^{2}}{\left (1-x \right )^{2}}+1}{\left (\frac {x +1}{1-x}+1\right )^{2}}}\, \left (\frac {x +1}{1-x}+1\right )}\) \(322\)
trager \(-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) \ln \left (-\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x +2 \sqrt {x^{2}+1}-\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right )}{x -1}\right )}{3}+\ln \left (x -\sqrt {x^{2}+1}\right )+\operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right ) \ln \left (\frac {-27 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )^{3} x +3 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right ) x +\sqrt {x^{2}+1}-3 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )}{9 x \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )^{2}+1}\right )+9 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )^{3} \ln \left (\frac {243 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )^{5} x -27 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )^{3} x -27 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )^{3}+\sqrt {x^{2}+1}+3 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )}{-1+9 x \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )^{2}-x}\right )-\operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right ) \ln \left (\frac {243 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )^{5} x -27 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )^{3} x -27 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )^{3}+\sqrt {x^{2}+1}+3 \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )}{-1+9 x \operatorname {RootOf}\left (81 \textit {\_Z}^{4}-9 \textit {\_Z}^{2}+1\right )^{2}-x}\right )\) \(390\)

Input:

int(x*(x^2+1)^(1/2)/(-x^3+1),x,method=_RETURNVERBOSE)
 

Output:

-1/3*((x-1)^2+2*x)^(1/2)-arcsinh(x)+1/3*2^(1/2)*arctanh(1/4*(2*x+2)*2^(1/2 
)/((x-1)^2+2*x)^(1/2))+1/3*(x^2+1)^(1/2)-1/6*2^(1/2)*(2*(x+1)^2/(1-x)^2+2) 
^(1/2)*(3^(1/2)*arctanh(1/2*(2*(x+1)^2/(1-x)^2+2)^(1/2)*3^(1/2))-arctan(1/ 
((x+1)^2/(1-x)^2+1)*(2*(x+1)^2/(1-x)^2+2)^(1/2)*(x+1)/(1-x)))/(((x+1)^2/(1 
-x)^2+1)/((x+1)/(1-x)+1)^2)^(1/2)/((x+1)/(1-x)+1)-1/3*2^(1/2)/(((x+1)^2/(1 
-x)^2+1)/((x+1)/(1-x)+1)^2)^(1/2)/((x+1)/(1-x)+1)*(2*(x+1)^2/(1-x)^2+2)^(1 
/2)*arctan(1/((x+1)^2/(1-x)^2+1)*(2*(x+1)^2/(1-x)^2+2)^(1/2)*(x+1)/(1-x))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 180 vs. \(2 (61) = 122\).

Time = 0.08 (sec) , antiderivative size = 180, normalized size of antiderivative = 2.28 \[ \int \frac {x \sqrt {1+x^2}}{1-x^3} \, dx=\frac {1}{6} \, \sqrt {3} \log \left (2 \, x^{2} - \sqrt {x^{2} + 1} {\left (2 \, x + \sqrt {3} + 1\right )} + \sqrt {3} {\left (x + 1\right )} + x + 3\right ) - \frac {1}{6} \, \sqrt {3} \log \left (2 \, x^{2} - \sqrt {x^{2} + 1} {\left (2 \, x - \sqrt {3} + 1\right )} - \sqrt {3} {\left (x + 1\right )} + x + 3\right ) + \frac {1}{3} \, \sqrt {2} \log \left (-\frac {\sqrt {2} {\left (x + 1\right )} + \sqrt {x^{2} + 1} {\left (\sqrt {2} + 2\right )} + x + 1}{x - 1}\right ) - \frac {1}{3} \, \arctan \left (-\sqrt {3} x + \sqrt {x^{2} + 1} {\left (\sqrt {3} + 1\right )} - x + 1\right ) + \frac {1}{3} \, \arctan \left (-\sqrt {3} x + \sqrt {x^{2} + 1} {\left (\sqrt {3} - 1\right )} + x - 1\right ) + \log \left (-x + \sqrt {x^{2} + 1}\right ) \] Input:

integrate(x*(x^2+1)^(1/2)/(-x^3+1),x, algorithm="fricas")
 

Output:

1/6*sqrt(3)*log(2*x^2 - sqrt(x^2 + 1)*(2*x + sqrt(3) + 1) + sqrt(3)*(x + 1 
) + x + 3) - 1/6*sqrt(3)*log(2*x^2 - sqrt(x^2 + 1)*(2*x - sqrt(3) + 1) - s 
qrt(3)*(x + 1) + x + 3) + 1/3*sqrt(2)*log(-(sqrt(2)*(x + 1) + sqrt(x^2 + 1 
)*(sqrt(2) + 2) + x + 1)/(x - 1)) - 1/3*arctan(-sqrt(3)*x + sqrt(x^2 + 1)* 
(sqrt(3) + 1) - x + 1) + 1/3*arctan(-sqrt(3)*x + sqrt(x^2 + 1)*(sqrt(3) - 
1) + x - 1) + log(-x + sqrt(x^2 + 1))
 

Sympy [F]

\[ \int \frac {x \sqrt {1+x^2}}{1-x^3} \, dx=- \int \frac {x \sqrt {x^{2} + 1}}{x^{3} - 1}\, dx \] Input:

integrate(x*(x**2+1)**(1/2)/(-x**3+1),x)
                                                                                    
                                                                                    
 

Output:

-Integral(x*sqrt(x**2 + 1)/(x**3 - 1), x)
 

Maxima [F]

\[ \int \frac {x \sqrt {1+x^2}}{1-x^3} \, dx=\int { -\frac {\sqrt {x^{2} + 1} x}{x^{3} - 1} \,d x } \] Input:

integrate(x*(x^2+1)^(1/2)/(-x^3+1),x, algorithm="maxima")
 

Output:

-integrate(sqrt(x^2 + 1)*x/(x^3 - 1), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 186 vs. \(2 (61) = 122\).

Time = 0.14 (sec) , antiderivative size = 186, normalized size of antiderivative = 2.35 \[ \int \frac {x \sqrt {1+x^2}}{1-x^3} \, dx=-\frac {1}{6} \, \pi + \frac {1}{6} \, \sqrt {3} \log \left ({\left (x + \sqrt {3} - \sqrt {x^{2} + 1} + 1\right )}^{2} + {\left (x - \sqrt {x^{2} + 1}\right )}^{2}\right ) - \frac {1}{6} \, \sqrt {3} \log \left ({\left (x - \sqrt {3} - \sqrt {x^{2} + 1} + 1\right )}^{2} + {\left (x - \sqrt {x^{2} + 1}\right )}^{2}\right ) - \frac {1}{3} \, \sqrt {2} \log \left (\frac {{\left | -2 \, x - 2 \, \sqrt {2} + 2 \, \sqrt {x^{2} + 1} + 2 \right |}}{{\left | -2 \, x + 2 \, \sqrt {2} + 2 \, \sqrt {x^{2} + 1} + 2 \right |}}\right ) - \frac {1}{3} \, \arctan \left (-{\left (x - \sqrt {x^{2} + 1}\right )} {\left (\sqrt {3} + 1\right )} + 1\right ) - \frac {1}{3} \, \arctan \left ({\left (x - \sqrt {x^{2} + 1}\right )} {\left (\sqrt {3} - 1\right )} + 1\right ) + \log \left (-x + \sqrt {x^{2} + 1}\right ) \] Input:

integrate(x*(x^2+1)^(1/2)/(-x^3+1),x, algorithm="giac")
 

Output:

-1/6*pi + 1/6*sqrt(3)*log((x + sqrt(3) - sqrt(x^2 + 1) + 1)^2 + (x - sqrt( 
x^2 + 1))^2) - 1/6*sqrt(3)*log((x - sqrt(3) - sqrt(x^2 + 1) + 1)^2 + (x - 
sqrt(x^2 + 1))^2) - 1/3*sqrt(2)*log(abs(-2*x - 2*sqrt(2) + 2*sqrt(x^2 + 1) 
 + 2)/abs(-2*x + 2*sqrt(2) + 2*sqrt(x^2 + 1) + 2)) - 1/3*arctan(-(x - sqrt 
(x^2 + 1))*(sqrt(3) + 1) + 1) - 1/3*arctan((x - sqrt(x^2 + 1))*(sqrt(3) - 
1) + 1) + log(-x + sqrt(x^2 + 1))
 

Mupad [B] (verification not implemented)

Time = 22.44 (sec) , antiderivative size = 184, normalized size of antiderivative = 2.33 \[ \int \frac {x \sqrt {1+x^2}}{1-x^3} \, dx=-\mathrm {asinh}\left (x\right )-\frac {\sqrt {2}\,\left (\ln \left (x-1\right )-\ln \left (x+\sqrt {2}\,\sqrt {x^2+1}+1\right )\right )}{3}+\frac {\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\ln \left (x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-\ln \left (1+\left (\frac {\sqrt {3}}{2}+\frac {1}{2}{}\mathrm {i}\right )\,\sqrt {x^2+1}-\frac {x}{2}-\frac {\sqrt {3}\,x\,1{}\mathrm {i}}{2}\right )\right )}{3\,{\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}^2\,\sqrt {{\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}^2+1}}-\frac {\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\ln \left (x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-\ln \left (1+\left (\frac {\sqrt {3}}{2}-\frac {1}{2}{}\mathrm {i}\right )\,\sqrt {x^2+1}-\frac {x}{2}+\frac {\sqrt {3}\,x\,1{}\mathrm {i}}{2}\right )\right )}{3\,{\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}^2\,\sqrt {{\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}^2+1}} \] Input:

int(-(x*(x^2 + 1)^(1/2))/(x^3 - 1),x)
 

Output:

(((3^(1/2)*1i)/2 - 1/2)*(log(x + (3^(1/2)*1i)/2 + 1/2) - log((3^(1/2)/2 + 
1i/2)*(x^2 + 1)^(1/2) - x/2 - (3^(1/2)*x*1i)/2 + 1)))/(3*((3^(1/2)*1i)/2 + 
 1/2)^2*(((3^(1/2)*1i)/2 + 1/2)^2 + 1)^(1/2)) - (2^(1/2)*(log(x - 1) - log 
(x + 2^(1/2)*(x^2 + 1)^(1/2) + 1)))/3 - asinh(x) - (((3^(1/2)*1i)/2 + 1/2) 
*(log(x - (3^(1/2)*1i)/2 + 1/2) - log((3^(1/2)/2 - 1i/2)*(x^2 + 1)^(1/2) - 
 x/2 + (3^(1/2)*x*1i)/2 + 1)))/(3*((3^(1/2)*1i)/2 - 1/2)^2*(((3^(1/2)*1i)/ 
2 - 1/2)^2 + 1)^(1/2))
 

Reduce [F]

\[ \int \frac {x \sqrt {1+x^2}}{1-x^3} \, dx=-\left (\int \frac {\sqrt {x^{2}+1}\, x}{x^{3}-1}d x \right ) \] Input:

int(x*(x^2+1)^(1/2)/(-x^3+1),x)
 

Output:

 - int((sqrt(x**2 + 1)*x)/(x**3 - 1),x)