\(\int \frac {\sqrt {1+x^2}}{x^5 (1-x^3)} \, dx\) [61]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 135 \[ \int \frac {\sqrt {1+x^2}}{x^5 \left (1-x^3\right )} \, dx=-\frac {\sqrt {1+x^2}}{4 x^4}-\frac {\sqrt {1+x^2}}{8 x^2}-\frac {\sqrt {1+x^2}}{x}-\frac {1}{3} \arctan \left (\frac {1+x}{\sqrt {1+x^2}}\right )-\frac {\text {arctanh}\left (\frac {1-x}{\sqrt {3} \sqrt {1+x^2}}\right )}{\sqrt {3}}+\frac {1}{3} \sqrt {2} \text {arctanh}\left (\frac {1+x}{\sqrt {2} \sqrt {1+x^2}}\right )+\frac {1}{8} \text {arctanh}\left (\sqrt {1+x^2}\right ) \] Output:

-1/4*(x^2+1)^(1/2)/x^4-1/8*(x^2+1)^(1/2)/x^2-(x^2+1)^(1/2)/x-1/3*arctan((1 
+x)/(x^2+1)^(1/2))-1/3*arctanh(1/3*(1-x)*3^(1/2)/(x^2+1)^(1/2))*3^(1/2)+1/ 
3*2^(1/2)*arctanh(1/2*(1+x)*2^(1/2)/(x^2+1)^(1/2))+1/8*arctanh((x^2+1)^(1/ 
2))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.32 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.39 \[ \int \frac {\sqrt {1+x^2}}{x^5 \left (1-x^3\right )} \, dx=\frac {1}{24} \left (-\frac {3 \sqrt {1+x^2} \left (2+x^2+8 x^3\right )}{x^4}-6 \text {arctanh}\left (x-\sqrt {1+x^2}\right )+16 \sqrt {2} \text {arctanh}\left (\frac {1-x+\sqrt {1+x^2}}{\sqrt {2}}\right )+16 \text {RootSum}\left [1+2 \text {$\#$1}+2 \text {$\#$1}^2-2 \text {$\#$1}^3+\text {$\#$1}^4\&,\frac {-\log \left (-x+\sqrt {1+x^2}-\text {$\#$1}\right )-\log \left (-x+\sqrt {1+x^2}-\text {$\#$1}\right ) \text {$\#$1}+\log \left (-x+\sqrt {1+x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{1+2 \text {$\#$1}-3 \text {$\#$1}^2+2 \text {$\#$1}^3}\&\right ]\right ) \] Input:

Integrate[Sqrt[1 + x^2]/(x^5*(1 - x^3)),x]
 

Output:

((-3*Sqrt[1 + x^2]*(2 + x^2 + 8*x^3))/x^4 - 6*ArcTanh[x - Sqrt[1 + x^2]] + 
 16*Sqrt[2]*ArcTanh[(1 - x + Sqrt[1 + x^2])/Sqrt[2]] + 16*RootSum[1 + 2*#1 
 + 2*#1^2 - 2*#1^3 + #1^4 & , (-Log[-x + Sqrt[1 + x^2] - #1] - Log[-x + Sq 
rt[1 + x^2] - #1]*#1 + Log[-x + Sqrt[1 + x^2] - #1]*#1^2)/(1 + 2*#1 - 3*#1 
^2 + 2*#1^3) & ])/24
 

Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x^2+1}}{x^5 \left (1-x^3\right )} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (\frac {\sqrt {x^2+1} (x-1)}{3 \left (x^2+x+1\right )}+\frac {\sqrt {x^2+1}}{x^2}-\frac {\sqrt {x^2+1}}{3 (x-1)}+\frac {\sqrt {x^2+1}}{x^5}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {1}{3} \arctan \left (\frac {x+1}{\sqrt {x^2+1}}\right )-\frac {\text {arctanh}\left (\frac {1-x}{\sqrt {3} \sqrt {x^2+1}}\right )}{\sqrt {3}}+\frac {1}{3} \sqrt {2} \text {arctanh}\left (\frac {x+1}{\sqrt {2} \sqrt {x^2+1}}\right )+\frac {1}{8} \text {arctanh}\left (\sqrt {x^2+1}\right )-\frac {\sqrt {x^2+1}}{x}-\frac {\sqrt {x^2+1}}{8 x^2}-\frac {\sqrt {x^2+1}}{4 x^4}\)

Input:

Int[Sqrt[1 + x^2]/(x^5*(1 - x^3)),x]
 

Output:

-1/4*Sqrt[1 + x^2]/x^4 - Sqrt[1 + x^2]/(8*x^2) - Sqrt[1 + x^2]/x - ArcTan[ 
(1 + x)/Sqrt[1 + x^2]]/3 - ArcTanh[(1 - x)/(Sqrt[3]*Sqrt[1 + x^2])]/Sqrt[3 
] + (Sqrt[2]*ArcTanh[(1 + x)/(Sqrt[2]*Sqrt[1 + x^2])])/3 + ArcTanh[Sqrt[1 
+ x^2]]/8
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(217\) vs. \(2(105)=210\).

Time = 0.63 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.61

method result size
risch \(-\frac {8 x^{5}+x^{4}+8 x^{3}+3 x^{2}+2}{8 x^{4} \sqrt {x^{2}+1}}+\frac {\operatorname {arctanh}\left (\frac {1}{\sqrt {x^{2}+1}}\right )}{8}+\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 x +2\right ) \sqrt {2}}{4 \sqrt {\left (x -1\right )^{2}+2 x}}\right )}{3}-\frac {\sqrt {2}\, \sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (\sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \sqrt {3}}{2}\right )+\arctan \left (\frac {\sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (x +1\right )}{\left (\frac {\left (x +1\right )^{2}}{\left (1-x \right )^{2}}+1\right ) \left (1-x \right )}\right )\right )}{6 \sqrt {\frac {\frac {\left (x +1\right )^{2}}{\left (1-x \right )^{2}}+1}{\left (\frac {x +1}{1-x}+1\right )^{2}}}\, \left (\frac {x +1}{1-x}+1\right )}\) \(218\)
default \(-\frac {\left (x^{2}+1\right )^{\frac {3}{2}}}{4 x^{4}}+\frac {\left (x^{2}+1\right )^{\frac {3}{2}}}{8 x^{2}}+\frac {5 \sqrt {x^{2}+1}}{24}+\frac {\operatorname {arctanh}\left (\frac {1}{\sqrt {x^{2}+1}}\right )}{8}-\frac {\sqrt {\left (x -1\right )^{2}+2 x}}{3}+\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 x +2\right ) \sqrt {2}}{4 \sqrt {\left (x -1\right )^{2}+2 x}}\right )}{3}-\frac {\left (x^{2}+1\right )^{\frac {3}{2}}}{x}+\sqrt {x^{2}+1}\, x -\frac {\sqrt {2}\, \sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (\sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \sqrt {3}}{2}\right )-\arctan \left (\frac {\sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (x +1\right )}{\left (\frac {\left (x +1\right )^{2}}{\left (1-x \right )^{2}}+1\right ) \left (1-x \right )}\right )\right )}{6 \sqrt {\frac {\frac {\left (x +1\right )^{2}}{\left (1-x \right )^{2}}+1}{\left (\frac {x +1}{1-x}+1\right )^{2}}}\, \left (\frac {x +1}{1-x}+1\right )}-\frac {\sqrt {2}\, \sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \arctan \left (\frac {\sqrt {\frac {2 \left (x +1\right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (x +1\right )}{\left (\frac {\left (x +1\right )^{2}}{\left (1-x \right )^{2}}+1\right ) \left (1-x \right )}\right )}{3 \sqrt {\frac {\frac {\left (x +1\right )^{2}}{\left (1-x \right )^{2}}+1}{\left (\frac {x +1}{1-x}+1\right )^{2}}}\, \left (\frac {x +1}{1-x}+1\right )}\) \(373\)
trager \(-\frac {\left (8 x^{3}+x^{2}+2\right ) \sqrt {x^{2}+1}}{8 x^{4}}-\frac {\ln \left (\frac {\sqrt {x^{2}+1}-1}{x}\right )}{8}+72 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{3} \ln \left (-\frac {33696 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{5} x -67392 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{5}-2664 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{3} x +2520 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{3}+288 \sqrt {x^{2}+1}\, \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{2}+44 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right ) x -22 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )-3 \sqrt {x^{2}+1}}{36 x \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{2}-72 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{2}-3 x -1}\right )-2 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right ) \ln \left (-\frac {33696 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{5} x -67392 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{5}-2664 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{3} x +2520 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{3}+288 \sqrt {x^{2}+1}\, \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{2}+44 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right ) x -22 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )-3 \sqrt {x^{2}+1}}{36 x \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{2}-72 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{2}-3 x -1}\right )-2 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right ) \ln \left (-\frac {5184 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{5} x -10368 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{5}+936 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{3} x -1440 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{3}-288 \sqrt {x^{2}+1}\, \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{2}+22 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right ) x +22 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )+5 \sqrt {x^{2}+1}}{36 x \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{2}-72 \operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )^{2}+2 x +3}\right )+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) \ln \left (\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x +\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right )+2 \sqrt {x^{2}+1}}{x -1}\right )}{3}\) \(666\)

Input:

int((x^2+1)^(1/2)/x^5/(-x^3+1),x,method=_RETURNVERBOSE)
 

Output:

-1/8*(8*x^5+x^4+8*x^3+3*x^2+2)/x^4/(x^2+1)^(1/2)+1/8*arctanh(1/(x^2+1)^(1/ 
2))+1/3*2^(1/2)*arctanh(1/4*(2*x+2)*2^(1/2)/((x-1)^2+2*x)^(1/2))-1/6*2^(1/ 
2)*(2*(x+1)^2/(1-x)^2+2)^(1/2)*(3^(1/2)*arctanh(1/2*(2*(x+1)^2/(1-x)^2+2)^ 
(1/2)*3^(1/2))+arctan(1/((x+1)^2/(1-x)^2+1)*(2*(x+1)^2/(1-x)^2+2)^(1/2)*(x 
+1)/(1-x)))/(((x+1)^2/(1-x)^2+1)/((x+1)/(1-x)+1)^2)^(1/2)/((x+1)/(1-x)+1)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 248 vs. \(2 (103) = 206\).

Time = 0.08 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.84 \[ \int \frac {\sqrt {1+x^2}}{x^5 \left (1-x^3\right )} \, dx=\frac {4 \, \sqrt {3} x^{4} \log \left (2 \, x^{2} - \sqrt {x^{2} + 1} {\left (2 \, x + \sqrt {3} + 1\right )} + \sqrt {3} {\left (x + 1\right )} + x + 3\right ) - 4 \, \sqrt {3} x^{4} \log \left (2 \, x^{2} - \sqrt {x^{2} + 1} {\left (2 \, x - \sqrt {3} + 1\right )} - \sqrt {3} {\left (x + 1\right )} + x + 3\right ) + 8 \, \sqrt {2} x^{4} \log \left (-\frac {\sqrt {2} {\left (x + 1\right )} + \sqrt {x^{2} + 1} {\left (\sqrt {2} + 2\right )} + x + 1}{x - 1}\right ) - 8 \, x^{4} \arctan \left (-\sqrt {3} x + \sqrt {x^{2} + 1} {\left (\sqrt {3} + 1\right )} - x + 1\right ) + 8 \, x^{4} \arctan \left (-\sqrt {3} x + \sqrt {x^{2} + 1} {\left (\sqrt {3} - 1\right )} + x - 1\right ) + 3 \, x^{4} \log \left (-x + \sqrt {x^{2} + 1} + 1\right ) - 3 \, x^{4} \log \left (-x + \sqrt {x^{2} + 1} - 1\right ) - 24 \, x^{4} - 3 \, {\left (8 \, x^{3} + x^{2} + 2\right )} \sqrt {x^{2} + 1}}{24 \, x^{4}} \] Input:

integrate((x^2+1)^(1/2)/x^5/(-x^3+1),x, algorithm="fricas")
 

Output:

1/24*(4*sqrt(3)*x^4*log(2*x^2 - sqrt(x^2 + 1)*(2*x + sqrt(3) + 1) + sqrt(3 
)*(x + 1) + x + 3) - 4*sqrt(3)*x^4*log(2*x^2 - sqrt(x^2 + 1)*(2*x - sqrt(3 
) + 1) - sqrt(3)*(x + 1) + x + 3) + 8*sqrt(2)*x^4*log(-(sqrt(2)*(x + 1) + 
sqrt(x^2 + 1)*(sqrt(2) + 2) + x + 1)/(x - 1)) - 8*x^4*arctan(-sqrt(3)*x + 
sqrt(x^2 + 1)*(sqrt(3) + 1) - x + 1) + 8*x^4*arctan(-sqrt(3)*x + sqrt(x^2 
+ 1)*(sqrt(3) - 1) + x - 1) + 3*x^4*log(-x + sqrt(x^2 + 1) + 1) - 3*x^4*lo 
g(-x + sqrt(x^2 + 1) - 1) - 24*x^4 - 3*(8*x^3 + x^2 + 2)*sqrt(x^2 + 1))/x^ 
4
 

Sympy [F]

\[ \int \frac {\sqrt {1+x^2}}{x^5 \left (1-x^3\right )} \, dx=- \int \frac {\sqrt {x^{2} + 1}}{x^{8} - x^{5}}\, dx \] Input:

integrate((x**2+1)**(1/2)/x**5/(-x**3+1),x)
                                                                                    
                                                                                    
 

Output:

-Integral(sqrt(x**2 + 1)/(x**8 - x**5), x)
 

Maxima [F]

\[ \int \frac {\sqrt {1+x^2}}{x^5 \left (1-x^3\right )} \, dx=\int { -\frac {\sqrt {x^{2} + 1}}{{\left (x^{3} - 1\right )} x^{5}} \,d x } \] Input:

integrate((x^2+1)^(1/2)/x^5/(-x^3+1),x, algorithm="maxima")
 

Output:

-integrate(sqrt(x^2 + 1)/((x^3 - 1)*x^5), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 325 vs. \(2 (103) = 206\).

Time = 0.14 (sec) , antiderivative size = 325, normalized size of antiderivative = 2.41 \[ \int \frac {\sqrt {1+x^2}}{x^5 \left (1-x^3\right )} \, dx=-\frac {1}{6} \, \pi + \frac {1}{6} \, \sqrt {3} \log \left ({\left (x + \sqrt {3} - \sqrt {x^{2} + 1} + 1\right )}^{2} + {\left (x - \sqrt {x^{2} + 1}\right )}^{2}\right ) - \frac {1}{6} \, \sqrt {3} \log \left ({\left (x - \sqrt {3} - \sqrt {x^{2} + 1} + 1\right )}^{2} + {\left (x - \sqrt {x^{2} + 1}\right )}^{2}\right ) - \frac {1}{3} \, \sqrt {2} \log \left (\frac {{\left | -2 \, x - 2 \, \sqrt {2} + 2 \, \sqrt {x^{2} + 1} + 2 \right |}}{{\left | -2 \, x + 2 \, \sqrt {2} + 2 \, \sqrt {x^{2} + 1} + 2 \right |}}\right ) + \frac {{\left (x - \sqrt {x^{2} + 1}\right )}^{7} + 8 \, {\left (x - \sqrt {x^{2} + 1}\right )}^{6} + 7 \, {\left (x - \sqrt {x^{2} + 1}\right )}^{5} - 24 \, {\left (x - \sqrt {x^{2} + 1}\right )}^{4} + 7 \, {\left (x - \sqrt {x^{2} + 1}\right )}^{3} + 24 \, {\left (x - \sqrt {x^{2} + 1}\right )}^{2} + x - \sqrt {x^{2} + 1} - 8}{4 \, {\left ({\left (x - \sqrt {x^{2} + 1}\right )}^{2} - 1\right )}^{4}} - \frac {1}{3} \, \arctan \left (-{\left (x - \sqrt {x^{2} + 1}\right )} {\left (\sqrt {3} + 1\right )} + 1\right ) - \frac {1}{3} \, \arctan \left ({\left (x - \sqrt {x^{2} + 1}\right )} {\left (\sqrt {3} - 1\right )} + 1\right ) + \frac {1}{8} \, \log \left ({\left | -x + \sqrt {x^{2} + 1} + 1 \right |}\right ) - \frac {1}{8} \, \log \left ({\left | -x + \sqrt {x^{2} + 1} - 1 \right |}\right ) \] Input:

integrate((x^2+1)^(1/2)/x^5/(-x^3+1),x, algorithm="giac")
 

Output:

-1/6*pi + 1/6*sqrt(3)*log((x + sqrt(3) - sqrt(x^2 + 1) + 1)^2 + (x - sqrt( 
x^2 + 1))^2) - 1/6*sqrt(3)*log((x - sqrt(3) - sqrt(x^2 + 1) + 1)^2 + (x - 
sqrt(x^2 + 1))^2) - 1/3*sqrt(2)*log(abs(-2*x - 2*sqrt(2) + 2*sqrt(x^2 + 1) 
 + 2)/abs(-2*x + 2*sqrt(2) + 2*sqrt(x^2 + 1) + 2)) + 1/4*((x - sqrt(x^2 + 
1))^7 + 8*(x - sqrt(x^2 + 1))^6 + 7*(x - sqrt(x^2 + 1))^5 - 24*(x - sqrt(x 
^2 + 1))^4 + 7*(x - sqrt(x^2 + 1))^3 + 24*(x - sqrt(x^2 + 1))^2 + x - sqrt 
(x^2 + 1) - 8)/((x - sqrt(x^2 + 1))^2 - 1)^4 - 1/3*arctan(-(x - sqrt(x^2 + 
 1))*(sqrt(3) + 1) + 1) - 1/3*arctan((x - sqrt(x^2 + 1))*(sqrt(3) - 1) + 1 
) + 1/8*log(abs(-x + sqrt(x^2 + 1) + 1)) - 1/8*log(abs(-x + sqrt(x^2 + 1) 
- 1))
 

Mupad [B] (verification not implemented)

Time = 22.33 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.58 \[ \int \frac {\sqrt {1+x^2}}{x^5 \left (1-x^3\right )} \, dx=\sqrt {x^2+1}\,\left (\frac {3}{8\,x^2}-\frac {1}{4\,x^4}\right )-\frac {\sqrt {2}\,\left (2\,\ln \left (x-1\right )-2\,\ln \left (x+\sqrt {2}\,\sqrt {x^2+1}+1\right )\right )}{6}-\frac {\sqrt {x^2+1}}{x}-\frac {\sqrt {x^2+1}}{2\,x^2}-\frac {\mathrm {atan}\left (\sqrt {x^2+1}\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{8}-\frac {\left (\ln \left (x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,2{}\mathrm {i}-\ln \left (1+\left (\frac {\sqrt {3}}{2}-\frac {1}{2}{}\mathrm {i}\right )\,\sqrt {x^2+1}-\frac {x}{2}+\frac {\sqrt {3}\,x\,1{}\mathrm {i}}{2}\right )\,2{}\mathrm {i}\right )\,1{}\mathrm {i}}{6\,\sqrt {{\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}^2+1}}-\frac {\left (\ln \left (x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,2{}\mathrm {i}-\ln \left (1+\left (\frac {\sqrt {3}}{2}+\frac {1}{2}{}\mathrm {i}\right )\,\sqrt {x^2+1}-\frac {x}{2}-\frac {\sqrt {3}\,x\,1{}\mathrm {i}}{2}\right )\,2{}\mathrm {i}\right )\,1{}\mathrm {i}}{6\,\sqrt {{\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}^2+1}} \] Input:

int(-(x^2 + 1)^(1/2)/(x^5*(x^3 - 1)),x)
 

Output:

(x^2 + 1)^(1/2)*(3/(8*x^2) - 1/(4*x^4)) - ((log(x - (3^(1/2)*1i)/2 + 1/2)* 
2i - log((3^(1/2)/2 - 1i/2)*(x^2 + 1)^(1/2) - x/2 + (3^(1/2)*x*1i)/2 + 1)* 
2i)*1i)/(6*(((3^(1/2)*1i)/2 - 1/2)^2 + 1)^(1/2)) - ((log(x + (3^(1/2)*1i)/ 
2 + 1/2)*2i - log((3^(1/2)/2 + 1i/2)*(x^2 + 1)^(1/2) - x/2 - (3^(1/2)*x*1i 
)/2 + 1)*2i)*1i)/(6*(((3^(1/2)*1i)/2 + 1/2)^2 + 1)^(1/2)) - (2^(1/2)*(2*lo 
g(x - 1) - 2*log(x + 2^(1/2)*(x^2 + 1)^(1/2) + 1)))/6 - (atan((x^2 + 1)^(1 
/2)*1i)*1i)/8 - (x^2 + 1)^(1/2)/x - (x^2 + 1)^(1/2)/(2*x^2)
 

Reduce [F]

\[ \int \frac {\sqrt {1+x^2}}{x^5 \left (1-x^3\right )} \, dx=\frac {-32 \sqrt {x^{2}+1}\, x^{3}-114 \sqrt {x^{2}+1}\, x^{2}-32 \sqrt {x^{2}+1}\, x +44 \sqrt {x^{2}+1}+48 \sqrt {2}\, \mathrm {log}\left (-\sqrt {x^{2}+1}\, \sqrt {2}-x -1\right ) x^{4}-48 \sqrt {2}\, \mathrm {log}\left (x -1\right ) x^{4}+320 \left (\int \frac {\sqrt {x^{2}+1}}{x^{9}+x^{8}+2 x^{7}+x^{6}+x^{5}}d x \right ) x^{4}+224 \left (\int \frac {\sqrt {x^{2}+1}}{x^{8}+x^{7}+2 x^{6}+x^{5}+x^{4}}d x \right ) x^{4}+272 \left (\int \frac {\sqrt {x^{2}+1}}{x^{7}+x^{6}+2 x^{5}+x^{4}+x^{3}}d x \right ) x^{4}-9 \,\mathrm {log}\left (\sqrt {x^{2}+1}-1\right ) x^{4}+9 \,\mathrm {log}\left (\sqrt {x^{2}+1}+1\right ) x^{4}}{144 x^{4}} \] Input:

int((x^2+1)^(1/2)/x^5/(-x^3+1),x)
 

Output:

( - 32*sqrt(x**2 + 1)*x**3 - 114*sqrt(x**2 + 1)*x**2 - 32*sqrt(x**2 + 1)*x 
 + 44*sqrt(x**2 + 1) + 48*sqrt(2)*log( - sqrt(x**2 + 1)*sqrt(2) - x - 1)*x 
**4 - 48*sqrt(2)*log(x - 1)*x**4 + 320*int(sqrt(x**2 + 1)/(x**9 + x**8 + 2 
*x**7 + x**6 + x**5),x)*x**4 + 224*int(sqrt(x**2 + 1)/(x**8 + x**7 + 2*x** 
6 + x**5 + x**4),x)*x**4 + 272*int(sqrt(x**2 + 1)/(x**7 + x**6 + 2*x**5 + 
x**4 + x**3),x)*x**4 - 9*log(sqrt(x**2 + 1) - 1)*x**4 + 9*log(sqrt(x**2 + 
1) + 1)*x**4)/(144*x**4)