\(\int \frac {(d x)^m (a+b x)}{\sqrt {c x^2}} \, dx\) [408]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 51 \[ \int \frac {(d x)^m (a+b x)}{\sqrt {c x^2}} \, dx=\frac {a (d x)^{1+m}}{d m \sqrt {c x^2}}+\frac {b (d x)^{2+m}}{d^2 (1+m) \sqrt {c x^2}} \] Output:

a*(d*x)^(1+m)/d/m/(c*x^2)^(1/2)+b*(d*x)^(2+m)/d^2/(1+m)/(c*x^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.65 \[ \int \frac {(d x)^m (a+b x)}{\sqrt {c x^2}} \, dx=\frac {x (d x)^m (a+a m+b m x)}{m (1+m) \sqrt {c x^2}} \] Input:

Integrate[((d*x)^m*(a + b*x))/Sqrt[c*x^2],x]
 

Output:

(x*(d*x)^m*(a + a*m + b*m*x))/(m*(1 + m)*Sqrt[c*x^2])
 

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.84, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {30, 53, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b x) (d x)^m}{\sqrt {c x^2}} \, dx\)

\(\Big \downarrow \) 30

\(\displaystyle \frac {d x \int (d x)^{m-1} (a+b x)dx}{\sqrt {c x^2}}\)

\(\Big \downarrow \) 53

\(\displaystyle \frac {d x \int \left (a (d x)^{m-1}+\frac {b (d x)^m}{d}\right )dx}{\sqrt {c x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {d x \left (\frac {a (d x)^m}{d m}+\frac {b (d x)^{m+1}}{d^2 (m+1)}\right )}{\sqrt {c x^2}}\)

Input:

Int[((d*x)^m*(a + b*x))/Sqrt[c*x^2],x]
 

Output:

(d*x*((a*(d*x)^m)/(d*m) + (b*(d*x)^(1 + m))/(d^2*(1 + m))))/Sqrt[c*x^2]
 

Defintions of rubi rules used

rule 30
Int[(u_.)*((a_.)*(x_))^(m_.)*((b_.)*(x_)^(i_.))^(p_), x_Symbol] :> Simp[b^I 
ntPart[p]*((b*x^i)^FracPart[p]/(a^(i*IntPart[p])*(a*x)^(i*FracPart[p]))) 
Int[u*(a*x)^(m + i*p), x], x] /; FreeQ[{a, b, i, m, p}, x] && IntegerQ[i] & 
&  !IntegerQ[p]
 

rule 53
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, 
x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4, 0]) 
|| LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.63

method result size
gosper \(\frac {x \left (b m x +a m +a \right ) \left (d x \right )^{m}}{\left (1+m \right ) m \sqrt {c \,x^{2}}}\) \(32\)
risch \(\frac {x \left (b m x +a m +a \right ) \left (d x \right )^{m}}{\left (1+m \right ) m \sqrt {c \,x^{2}}}\) \(32\)
orering \(\frac {x \left (b m x +a m +a \right ) \left (d x \right )^{m}}{\left (1+m \right ) m \sqrt {c \,x^{2}}}\) \(32\)

Input:

int((d*x)^m*(b*x+a)/(c*x^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

x*(b*m*x+a*m+a)*(d*x)^m/(1+m)/m/(c*x^2)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.71 \[ \int \frac {(d x)^m (a+b x)}{\sqrt {c x^2}} \, dx=\frac {{\left (b m x + a m + a\right )} \sqrt {c x^{2}} \left (d x\right )^{m}}{{\left (c m^{2} + c m\right )} x} \] Input:

integrate((d*x)^m*(b*x+a)/(c*x^2)^(1/2),x, algorithm="fricas")
 

Output:

(b*m*x + a*m + a)*sqrt(c*x^2)*(d*x)^m/((c*m^2 + c*m)*x)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 162 vs. \(2 (42) = 84\).

Time = 1.24 (sec) , antiderivative size = 162, normalized size of antiderivative = 3.18 \[ \int \frac {(d x)^m (a+b x)}{\sqrt {c x^2}} \, dx=\begin {cases} \frac {- \frac {a}{\sqrt {c x^{2}}} + \frac {b x \log {\left (x \right )}}{\sqrt {c x^{2}}}}{d} & \text {for}\: m = -1 \\\begin {cases} \frac {a x \log {\left (x \right )}}{\sqrt {c x^{2}}} + \frac {b \sqrt {c x^{2}}}{c} & \text {for}\: c \neq 0 \\\tilde {\infty } \left (a x + \frac {b x^{2}}{2}\right ) & \text {otherwise} \end {cases} & \text {for}\: m = 0 \\\frac {a m x \left (d x\right )^{m}}{m^{2} \sqrt {c x^{2}} + m \sqrt {c x^{2}}} + \frac {a x \left (d x\right )^{m}}{m^{2} \sqrt {c x^{2}} + m \sqrt {c x^{2}}} + \frac {b m x^{2} \left (d x\right )^{m}}{m^{2} \sqrt {c x^{2}} + m \sqrt {c x^{2}}} & \text {otherwise} \end {cases} \] Input:

integrate((d*x)**m*(b*x+a)/(c*x**2)**(1/2),x)
 

Output:

Piecewise(((-a/sqrt(c*x**2) + b*x*log(x)/sqrt(c*x**2))/d, Eq(m, -1)), (Pie 
cewise((a*x*log(x)/sqrt(c*x**2) + b*sqrt(c*x**2)/c, Ne(c, 0)), (zoo*(a*x + 
 b*x**2/2), True)), Eq(m, 0)), (a*m*x*(d*x)**m/(m**2*sqrt(c*x**2) + m*sqrt 
(c*x**2)) + a*x*(d*x)**m/(m**2*sqrt(c*x**2) + m*sqrt(c*x**2)) + b*m*x**2*( 
d*x)**m/(m**2*sqrt(c*x**2) + m*sqrt(c*x**2)), True))
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.63 \[ \int \frac {(d x)^m (a+b x)}{\sqrt {c x^2}} \, dx=\frac {b d^{m} x x^{m}}{\sqrt {c} {\left (m + 1\right )}} + \frac {a d^{m} x^{m}}{\sqrt {c} m} \] Input:

integrate((d*x)^m*(b*x+a)/(c*x^2)^(1/2),x, algorithm="maxima")
 

Output:

b*d^m*x*x^m/(sqrt(c)*(m + 1)) + a*d^m*x^m/(sqrt(c)*m)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(d x)^m (a+b x)}{\sqrt {c x^2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((d*x)^m*(b*x+a)/(c*x^2)^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Limit: Max order reached or unable 
to make series expansion Error: Bad Argument Value
 

Mupad [B] (verification not implemented)

Time = 22.94 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.59 \[ \int \frac {(d x)^m (a+b x)}{\sqrt {c x^2}} \, dx=\frac {\left (\frac {a\,x}{m}+\frac {b\,x^2}{m+1}\right )\,{\left (d\,x\right )}^m}{\sqrt {c\,x^2}} \] Input:

int(((d*x)^m*(a + b*x))/(c*x^2)^(1/2),x)
 

Output:

(((a*x)/m + (b*x^2)/(m + 1))*(d*x)^m)/(c*x^2)^(1/2)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.57 \[ \int \frac {(d x)^m (a+b x)}{\sqrt {c x^2}} \, dx=\frac {x^{m} d^{m} \sqrt {c}\, \left (b m x +a m +a \right )}{c m \left (m +1\right )} \] Input:

int((d*x)^m*(b*x+a)/(c*x^2)^(1/2),x)
 

Output:

(x**m*d**m*sqrt(c)*(a*m + a + b*m*x))/(c*m*(m + 1))