\(\int \frac {\sqrt {a+b (c x^2)^{3/2}}}{x^5} \, dx\) [48]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 681 \[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^5} \, dx=-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{4 x^4}-\frac {3 b c^2 \sqrt {a+b \left (c x^2\right )^{3/2}}}{8 a \sqrt {c x^2}}+\frac {3 b^{4/3} c^2 \sqrt {a+b \left (c x^2\right )^{3/2}}}{8 a \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )}-\frac {3 \sqrt [4]{3} \sqrt {2-\sqrt {3}} b^{4/3} c^2 \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right ) \sqrt {\frac {a^{2/3}+b^{2/3} c x^2-\sqrt [3]{a} \sqrt [3]{b} \sqrt {c x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}}\right )|-7-4 \sqrt {3}\right )}{16 a^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )^2}} \sqrt {a+b \left (c x^2\right )^{3/2}}}+\frac {3^{3/4} b^{4/3} c^2 \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right ) \sqrt {\frac {a^{2/3}+b^{2/3} c x^2-\sqrt [3]{a} \sqrt [3]{b} \sqrt {c x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}}\right ),-7-4 \sqrt {3}\right )}{4 \sqrt {2} a^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )^2}} \sqrt {a+b \left (c x^2\right )^{3/2}}} \] Output:

-1/4*(a+b*(c*x^2)^(3/2))^(1/2)/x^4-3/8*b*c^2*(a+b*(c*x^2)^(3/2))^(1/2)/a/( 
c*x^2)^(1/2)+3/8*b^(4/3)*c^2*(a+b*(c*x^2)^(3/2))^(1/2)/a/((1+3^(1/2))*a^(1 
/3)+b^(1/3)*(c*x^2)^(1/2))-3/16*3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*b^(4/3)* 
c^2*(a^(1/3)+b^(1/3)*(c*x^2)^(1/2))*((a^(2/3)+b^(2/3)*c*x^2-a^(1/3)*b^(1/3 
)*(c*x^2)^(1/2))/((1+3^(1/2))*a^(1/3)+b^(1/3)*(c*x^2)^(1/2))^2)^(1/2)*Elli 
pticE(((1-3^(1/2))*a^(1/3)+b^(1/3)*(c*x^2)^(1/2))/((1+3^(1/2))*a^(1/3)+b^( 
1/3)*(c*x^2)^(1/2)),I*3^(1/2)+2*I)/a^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*(c*x^ 
2)^(1/2))/((1+3^(1/2))*a^(1/3)+b^(1/3)*(c*x^2)^(1/2))^2)^(1/2)/(a+b*(c*x^2 
)^(3/2))^(1/2)+1/8*3^(3/4)*b^(4/3)*c^2*(a^(1/3)+b^(1/3)*(c*x^2)^(1/2))*((a 
^(2/3)+b^(2/3)*c*x^2-a^(1/3)*b^(1/3)*(c*x^2)^(1/2))/((1+3^(1/2))*a^(1/3)+b 
^(1/3)*(c*x^2)^(1/2))^2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)*(c*x 
^2)^(1/2))/((1+3^(1/2))*a^(1/3)+b^(1/3)*(c*x^2)^(1/2)),I*3^(1/2)+2*I)*2^(1 
/2)/a^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*(c*x^2)^(1/2))/((1+3^(1/2))*a^(1/3)+ 
b^(1/3)*(c*x^2)^(1/2))^2)^(1/2)/(a+b*(c*x^2)^(3/2))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.10 \[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^5} \, dx=-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}} \operatorname {Hypergeometric2F1}\left (-\frac {4}{3},-\frac {1}{2},-\frac {1}{3},-\frac {b \left (c x^2\right )^{3/2}}{a}\right )}{4 x^4 \sqrt {1+\frac {b \left (c x^2\right )^{3/2}}{a}}} \] Input:

Integrate[Sqrt[a + b*(c*x^2)^(3/2)]/x^5,x]
 

Output:

-1/4*(Sqrt[a + b*(c*x^2)^(3/2)]*Hypergeometric2F1[-4/3, -1/2, -1/3, -((b*( 
c*x^2)^(3/2))/a)])/(x^4*Sqrt[1 + (b*(c*x^2)^(3/2))/a])
 

Rubi [A] (warning: unable to verify)

Time = 0.93 (sec) , antiderivative size = 701, normalized size of antiderivative = 1.03, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {892, 809, 847, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^5} \, dx\)

\(\Big \downarrow \) 892

\(\displaystyle c^2 \int \frac {\sqrt {b \left (c x^2\right )^{3/2}+a}}{\left (c x^2\right )^{5/2}}d\sqrt {c x^2}\)

\(\Big \downarrow \) 809

\(\displaystyle c^2 \left (\frac {3}{8} b \int \frac {1}{c x^2 \sqrt {b \left (c x^2\right )^{3/2}+a}}d\sqrt {c x^2}-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{4 c^2 x^4}\right )\)

\(\Big \downarrow \) 847

\(\displaystyle c^2 \left (\frac {3}{8} b \left (\frac {b \int \frac {\sqrt {c x^2}}{\sqrt {b \left (c x^2\right )^{3/2}+a}}d\sqrt {c x^2}}{2 a}-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{a \sqrt {c x^2}}\right )-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{4 c^2 x^4}\right )\)

\(\Big \downarrow \) 832

\(\displaystyle c^2 \left (\frac {3}{8} b \left (\frac {b \left (\frac {\int \frac {\sqrt [3]{b} \sqrt {c x^2}+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b \left (c x^2\right )^{3/2}+a}}d\sqrt {c x^2}}{\sqrt [3]{b}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \int \frac {1}{\sqrt {b \left (c x^2\right )^{3/2}+a}}d\sqrt {c x^2}}{\sqrt [3]{b}}\right )}{2 a}-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{a \sqrt {c x^2}}\right )-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{4 c^2 x^4}\right )\)

\(\Big \downarrow \) 759

\(\displaystyle c^2 \left (\frac {3}{8} b \left (\frac {b \left (\frac {\int \frac {\sqrt [3]{b} \sqrt {c x^2}+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b \left (c x^2\right )^{3/2}+a}}d\sqrt {c x^2}}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sqrt {c x^2}+b^{2/3} c x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} \sqrt {c x^2}+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} \sqrt {c x^2}+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )^2}} \sqrt {a+b \left (c x^2\right )^{3/2}}}\right )}{2 a}-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{a \sqrt {c x^2}}\right )-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{4 c^2 x^4}\right )\)

\(\Big \downarrow \) 2416

\(\displaystyle c^2 \left (\frac {3}{8} b \left (\frac {b \left (\frac {\frac {2 \sqrt {a+b \left (c x^2\right )^{3/2}}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sqrt {c x^2}+b^{2/3} c x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{b} \sqrt {c x^2}+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} \sqrt {c x^2}+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )^2}} \sqrt {a+b \left (c x^2\right )^{3/2}}}}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sqrt {c x^2}+b^{2/3} c x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} \sqrt {c x^2}+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} \sqrt {c x^2}+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} \sqrt {c x^2}\right )^2}} \sqrt {a+b \left (c x^2\right )^{3/2}}}\right )}{2 a}-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{a \sqrt {c x^2}}\right )-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{4 c^2 x^4}\right )\)

Input:

Int[Sqrt[a + b*(c*x^2)^(3/2)]/x^5,x]
 

Output:

c^2*(-1/4*Sqrt[a + b*(c*x^2)^(3/2)]/(c^2*x^4) + (3*b*(-(Sqrt[a + b*(c*x^2) 
^(3/2)]/(a*Sqrt[c*x^2])) + (b*(((2*Sqrt[a + b*(c*x^2)^(3/2)])/(b^(1/3)*((1 
 + Sqrt[3])*a^(1/3) + b^(1/3)*Sqrt[c*x^2])) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*a 
^(1/3)*(a^(1/3) + b^(1/3)*Sqrt[c*x^2])*Sqrt[(a^(2/3) + b^(2/3)*c*x^2 - a^( 
1/3)*b^(1/3)*Sqrt[c*x^2])/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*Sqrt[c*x^2])^2] 
*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*Sqrt[c*x^2])/((1 + Sqrt 
[3])*a^(1/3) + b^(1/3)*Sqrt[c*x^2])], -7 - 4*Sqrt[3]])/(b^(1/3)*Sqrt[(a^(1 
/3)*(a^(1/3) + b^(1/3)*Sqrt[c*x^2]))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*Sqrt 
[c*x^2])^2]*Sqrt[a + b*(c*x^2)^(3/2)]))/b^(1/3) - (2*(1 - Sqrt[3])*Sqrt[2 
+ Sqrt[3]]*a^(1/3)*(a^(1/3) + b^(1/3)*Sqrt[c*x^2])*Sqrt[(a^(2/3) + b^(2/3) 
*c*x^2 - a^(1/3)*b^(1/3)*Sqrt[c*x^2])/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*Sqr 
t[c*x^2])^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*Sqrt[c*x^2] 
)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*Sqrt[c*x^2])], -7 - 4*Sqrt[3]])/(3^(1/4 
)*b^(2/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*Sqrt[c*x^2]))/((1 + Sqrt[3])*a^ 
(1/3) + b^(1/3)*Sqrt[c*x^2])^2]*Sqrt[a + b*(c*x^2)^(3/2)])))/(2*a)))/8)
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 809
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c* 
x)^(m + 1)*((a + b*x^n)^p/(c*(m + 1))), x] - Simp[b*n*(p/(c^n*(m + 1)))   I 
nt[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && IGtQ 
[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntB 
inomialQ[a, b, c, n, m, p, x]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 892
Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_.)*(x_)^(q_))^(n_))^(p_.), x_Symbo 
l] :> Simp[(d*x)^(m + 1)/(d*((c*x^q)^(1/q))^(m + 1))   Subst[Int[x^m*(a + b 
*x^(n*q))^p, x], x, (c*x^q)^(1/q)], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x 
] && IntegerQ[n*q] && NeQ[x, (c*x^q)^(1/q)]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [F]

\[\int \frac {\sqrt {a +\left (c \,x^{2}\right )^{\frac {3}{2}} b}}{x^{5}}d x\]

Input:

int((a+(c*x^2)^(3/2)*b)^(1/2)/x^5,x)
 

Output:

int((a+(c*x^2)^(3/2)*b)^(1/2)/x^5,x)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.17 \[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^5} \, dx=-\frac {3 \, \sqrt {c x^{2}} \sqrt {\frac {\sqrt {c x^{2}} b c}{x}} b c x^{3} {\rm weierstrassZeta}\left (0, -\frac {4 \, \sqrt {c x^{2}} a}{b c^{2} x}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, \sqrt {c x^{2}} a}{b c^{2} x}, x\right )\right ) + {\left (3 \, \sqrt {c x^{2}} b c x^{2} + 2 \, a\right )} \sqrt {\sqrt {c x^{2}} b c x^{2} + a}}{8 \, a x^{4}} \] Input:

integrate((a+b*(c*x^2)^(3/2))^(1/2)/x^5,x, algorithm="fricas")
 

Output:

-1/8*(3*sqrt(c*x^2)*sqrt(sqrt(c*x^2)*b*c/x)*b*c*x^3*weierstrassZeta(0, -4* 
sqrt(c*x^2)*a/(b*c^2*x), weierstrassPInverse(0, -4*sqrt(c*x^2)*a/(b*c^2*x) 
, x)) + (3*sqrt(c*x^2)*b*c*x^2 + 2*a)*sqrt(sqrt(c*x^2)*b*c*x^2 + a))/(a*x^ 
4)
 

Sympy [F]

\[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^5} \, dx=\int \frac {\sqrt {a + b \left (c x^{2}\right )^{\frac {3}{2}}}}{x^{5}}\, dx \] Input:

integrate((a+b*(c*x**2)**(3/2))**(1/2)/x**5,x)
 

Output:

Integral(sqrt(a + b*(c*x**2)**(3/2))/x**5, x)
 

Maxima [F]

\[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^5} \, dx=\int { \frac {\sqrt {\left (c x^{2}\right )^{\frac {3}{2}} b + a}}{x^{5}} \,d x } \] Input:

integrate((a+b*(c*x^2)^(3/2))^(1/2)/x^5,x, algorithm="maxima")
 

Output:

integrate(sqrt((c*x^2)^(3/2)*b + a)/x^5, x)
 

Giac [F]

\[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^5} \, dx=\int { \frac {\sqrt {\left (c x^{2}\right )^{\frac {3}{2}} b + a}}{x^{5}} \,d x } \] Input:

integrate((a+b*(c*x^2)^(3/2))^(1/2)/x^5,x, algorithm="giac")
 

Output:

integrate(sqrt((c*x^2)^(3/2)*b + a)/x^5, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^5} \, dx=\int \frac {\sqrt {a+b\,{\left (c\,x^2\right )}^{3/2}}}{x^5} \,d x \] Input:

int((a + b*(c*x^2)^(3/2))^(1/2)/x^5,x)
 

Output:

int((a + b*(c*x^2)^(3/2))^(1/2)/x^5, x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^5} \, dx=\int \frac {\sqrt {\sqrt {c}\, b c \,x^{3}+a}}{x^{5}}d x \] Input:

int((a+b*(c*x^2)^(3/2))^(1/2)/x^5,x)
                                                                                    
                                                                                    
 

Output:

int(sqrt(sqrt(c)*b*c*x**3 + a)/x**5,x)