\(\int \frac {1}{x^5 \sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}} \, dx\) [79]

Optimal result
Mathematica [A] (verified)
Rubi [F]
Maple [F]
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 93 \[ \int \frac {1}{x^5 \sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\frac {3}{8 x^2 \sqrt {x^2+\sqrt {1+x^4}}}-\frac {\sqrt {x^2+\sqrt {1+x^4}}}{4 x^4}+\frac {3}{8} \arctan \left (\sqrt {x^2+\sqrt {1+x^4}}\right )+\frac {3}{8} \text {arctanh}\left (\sqrt {x^2+\sqrt {1+x^4}}\right ) \] Output:

3/8/x^2/(x^2+(x^4+1)^(1/2))^(1/2)-1/4*(x^2+(x^4+1)^(1/2))^(1/2)/x^4+3/8*ar 
ctan((x^2+(x^4+1)^(1/2))^(1/2))+3/8*arctanh((x^2+(x^4+1)^(1/2))^(1/2))
 

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.94 \[ \int \frac {1}{x^5 \sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\frac {1}{8} \left (\frac {-2-x^4-x^2 \sqrt {1+x^4}}{x^4 \left (x^2+\sqrt {1+x^4}\right )^{3/2}}+3 \arctan \left (\sqrt {x^2+\sqrt {1+x^4}}\right )+3 \text {arctanh}\left (\sqrt {x^2+\sqrt {1+x^4}}\right )\right ) \] Input:

Integrate[1/(x^5*Sqrt[1 + x^4]*Sqrt[x^2 + Sqrt[1 + x^4]]),x]
 

Output:

((-2 - x^4 - x^2*Sqrt[1 + x^4])/(x^4*(x^2 + Sqrt[1 + x^4])^(3/2)) + 3*ArcT 
an[Sqrt[x^2 + Sqrt[1 + x^4]]] + 3*ArcTanh[Sqrt[x^2 + Sqrt[1 + x^4]]])/8
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^5 \sqrt {x^4+1} \sqrt {\sqrt {x^4+1}+x^2}} \, dx\)

\(\Big \downarrow \) 7299

\(\displaystyle \int \frac {1}{x^5 \sqrt {x^4+1} \sqrt {\sqrt {x^4+1}+x^2}}dx\)

Input:

Int[1/(x^5*Sqrt[1 + x^4]*Sqrt[x^2 + Sqrt[1 + x^4]]),x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 7299
Int[u_, x_] :> CannotIntegrate[u, x]
 
Maple [F]

\[\int \frac {1}{x^{5} \sqrt {x^{4}+1}\, \sqrt {x^{2}+\sqrt {x^{4}+1}}}d x\]

Input:

int(1/x^5/(x^4+1)^(1/2)/(x^2+(x^4+1)^(1/2))^(1/2),x)
 

Output:

int(1/x^5/(x^4+1)^(1/2)/(x^2+(x^4+1)^(1/2))^(1/2),x)
 

Fricas [A] (verification not implemented)

Time = 0.88 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.37 \[ \int \frac {1}{x^5 \sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}} \, dx=-\frac {3 \, x^{4} \arctan \left (-\frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (x^{2} - \sqrt {x^{4} + 1} - 1\right )}}{x^{2}}\right ) - 3 \, x^{4} \log \left (\frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}} {\left (x^{2} - \sqrt {x^{4} + 1} - 1\right )} - \sqrt {x^{4} + 1} - 1}{x^{2}}\right ) + 2 \, {\left (3 \, x^{4} - 3 \, \sqrt {x^{4} + 1} x^{2} + 2\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}}}{16 \, x^{4}} \] Input:

integrate(1/x^5/(x^4+1)^(1/2)/(x^2+(x^4+1)^(1/2))^(1/2),x, algorithm="fric 
as")
 

Output:

-1/16*(3*x^4*arctan(-sqrt(x^2 + sqrt(x^4 + 1))*(x^2 - sqrt(x^4 + 1) - 1)/x 
^2) - 3*x^4*log((sqrt(x^2 + sqrt(x^4 + 1))*(x^2 - sqrt(x^4 + 1) - 1) - sqr 
t(x^4 + 1) - 1)/x^2) + 2*(3*x^4 - 3*sqrt(x^4 + 1)*x^2 + 2)*sqrt(x^2 + sqrt 
(x^4 + 1)))/x^4
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 16.62 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.49 \[ \int \frac {1}{x^5 \sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}} \, dx=- \frac {\Gamma \left (\frac {3}{4}\right ) \Gamma \left (\frac {5}{4}\right ) \Gamma \left (\frac {7}{4}\right ) {{}_{3}F_{2}\left (\begin {matrix} \frac {3}{4}, \frac {5}{4}, \frac {7}{4} \\ \frac {3}{2}, \frac {11}{4} \end {matrix}\middle | {\frac {e^{i \pi }}{x^{4}}} \right )}}{2 \pi x^{7} \Gamma \left (\frac {11}{4}\right )} \] Input:

integrate(1/x**5/(x**4+1)**(1/2)/(x**2+(x**4+1)**(1/2))**(1/2),x)
 

Output:

-gamma(3/4)*gamma(5/4)*gamma(7/4)*hyper((3/4, 5/4, 7/4), (3/2, 11/4), exp_ 
polar(I*pi)/x**4)/(2*pi*x**7*gamma(11/4))
 

Maxima [F]

\[ \int \frac {1}{x^5 \sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\int { \frac {1}{\sqrt {x^{4} + 1} \sqrt {x^{2} + \sqrt {x^{4} + 1}} x^{5}} \,d x } \] Input:

integrate(1/x^5/(x^4+1)^(1/2)/(x^2+(x^4+1)^(1/2))^(1/2),x, algorithm="maxi 
ma")
 

Output:

integrate(1/(sqrt(x^4 + 1)*sqrt(x^2 + sqrt(x^4 + 1))*x^5), x)
 

Giac [F]

\[ \int \frac {1}{x^5 \sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\int { \frac {1}{\sqrt {x^{4} + 1} \sqrt {x^{2} + \sqrt {x^{4} + 1}} x^{5}} \,d x } \] Input:

integrate(1/x^5/(x^4+1)^(1/2)/(x^2+(x^4+1)^(1/2))^(1/2),x, algorithm="giac 
")
 

Output:

integrate(1/(sqrt(x^4 + 1)*sqrt(x^2 + sqrt(x^4 + 1))*x^5), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^5 \sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}} \, dx=\int \frac {1}{x^5\,\sqrt {x^4+1}\,\sqrt {\sqrt {x^4+1}+x^2}} \,d x \] Input:

int(1/(x^5*(x^4 + 1)^(1/2)*((x^4 + 1)^(1/2) + x^2)^(1/2)),x)
                                                                                    
                                                                                    
 

Output:

int(1/(x^5*(x^4 + 1)^(1/2)*((x^4 + 1)^(1/2) + x^2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{x^5 \sqrt {1+x^4} \sqrt {x^2+\sqrt {1+x^4}}} \, dx=-\frac {3 \mathit {atan} \left (\frac {\sqrt {\sqrt {x^{4}+1}+x^{2}}\, \sqrt {x^{4}+1}}{2}-\frac {\sqrt {\sqrt {x^{4}+1}+x^{2}}\, x^{2}}{2}-\frac {\sqrt {\sqrt {x^{4}+1}+x^{2}}}{2}\right )}{16}-\frac {3 \sqrt {\sqrt {x^{4}+1}+x^{2}}}{8}+\int \frac {\sqrt {\sqrt {x^{4}+1}+x^{2}}}{x^{9}+x^{5}}d x +\frac {11 \left (\int \frac {\sqrt {\sqrt {x^{4}+1}+x^{2}}}{x^{5}+x}d x \right )}{8}+\frac {3 \left (\int \frac {\sqrt {\sqrt {x^{4}+1}+x^{2}}\, x^{3}}{x^{4}+1}d x \right )}{8}-\left (\int \frac {\sqrt {\sqrt {x^{4}+1}+x^{2}}\, \sqrt {x^{4}+1}}{x^{7}+x^{3}}d x \right )-\frac {3 \,\mathrm {log}\left (\sqrt {\sqrt {x^{4}+1}+x^{2}}-1\right )}{16}+\frac {3 \,\mathrm {log}\left (\sqrt {\sqrt {x^{4}+1}+x^{2}}+1\right )}{16} \] Input:

int(1/x^5/(x^4+1)^(1/2)/(x^2+(x^4+1)^(1/2))^(1/2),x)
 

Output:

( - 3*atan((sqrt(sqrt(x**4 + 1) + x**2)*sqrt(x**4 + 1) - sqrt(sqrt(x**4 + 
1) + x**2)*x**2 - sqrt(sqrt(x**4 + 1) + x**2))/2) - 6*sqrt(sqrt(x**4 + 1) 
+ x**2) + 16*int(sqrt(sqrt(x**4 + 1) + x**2)/(x**9 + x**5),x) + 22*int(sqr 
t(sqrt(x**4 + 1) + x**2)/(x**5 + x),x) + 6*int((sqrt(sqrt(x**4 + 1) + x**2 
)*x**3)/(x**4 + 1),x) - 16*int((sqrt(sqrt(x**4 + 1) + x**2)*sqrt(x**4 + 1) 
)/(x**7 + x**3),x) - 3*log(sqrt(sqrt(x**4 + 1) + x**2) - 1) + 3*log(sqrt(s 
qrt(x**4 + 1) + x**2) + 1))/16