\(\int \frac {\sqrt {a+b x^2} (a e+4 b e x^2)}{c-d x^2 (a+b x^2)^3} \, dx\) [271]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 42, antiderivative size = 36 \[ \int \frac {\sqrt {a+b x^2} \left (a e+4 b e x^2\right )}{c-d x^2 \left (a+b x^2\right )^3} \, dx=\frac {e \text {arctanh}\left (\frac {\sqrt {d} x \left (a+b x^2\right )^{3/2}}{\sqrt {c}}\right )}{\sqrt {c} \sqrt {d}} \] Output:

e*arctanh(d^(1/2)*x*(b*x^2+a)^(3/2)/c^(1/2))/c^(1/2)/d^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 17.21 (sec) , antiderivative size = 23155, normalized size of antiderivative = 643.19 \[ \int \frac {\sqrt {a+b x^2} \left (a e+4 b e x^2\right )}{c-d x^2 \left (a+b x^2\right )^3} \, dx=\text {Result too large to show} \] Input:

Integrate[(Sqrt[a + b*x^2]*(a*e + 4*b*e*x^2))/(c - d*x^2*(a + b*x^2)^3),x]
 

Output:

Result too large to show
 

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {7260, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b x^2} \left (a e+4 b e x^2\right )}{c-d x^2 \left (a+b x^2\right )^3} \, dx\)

\(\Big \downarrow \) 7260

\(\displaystyle e \int \frac {1}{c-d x^2 \left (b x^2+a\right )^3}d\left (x \left (b x^2+a\right )^{3/2}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {e \text {arctanh}\left (\frac {\sqrt {d} x \left (a+b x^2\right )^{3/2}}{\sqrt {c}}\right )}{\sqrt {c} \sqrt {d}}\)

Input:

Int[(Sqrt[a + b*x^2]*(a*e + 4*b*e*x^2))/(c - d*x^2*(a + b*x^2)^3),x]
 

Output:

(e*ArcTanh[(Sqrt[d]*x*(a + b*x^2)^(3/2))/Sqrt[c]])/(Sqrt[c]*Sqrt[d])
 

Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 7260
Int[(u_)*(v_)^(r_.)*((a_) + (b_.)*(v_)^(p_.)*(w_)^(q_.))^(m_.), x_Symbol] : 
> With[{c = Simplify[u/(p*w*D[v, x] + q*v*D[w, x])]}, Simp[c*(p/(r + 1)) 
Subst[Int[(a + b*x^(p/(r + 1)))^m, x], x, v^(r + 1)*w], x] /; FreeQ[c, x]] 
/; FreeQ[{a, b, m, p, q, r}, x] && EqQ[p, q*(r + 1)] && NeQ[r, -1] && Integ 
erQ[p/(r + 1)]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.29 (sec) , antiderivative size = 131, normalized size of antiderivative = 3.64

method result size
default \(-\frac {e \,a^{2} \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\left (-a^{4} d -4 b c \right ) \textit {\_Z}^{6}+6 c \,b^{2} \textit {\_Z}^{4}-4 c \,b^{3} \textit {\_Z}^{2}+b^{4} c \right )}{\sum }\frac {\textit {\_R} \left (\textit {\_R}^{4}+2 \textit {\_R}^{2} b -3 b^{2}\right ) \ln \left (\frac {-\textit {\_R} x +\sqrt {b \,x^{2}+a}}{x}\right )}{-3 \textit {\_R}^{4} a^{4} d +4 \textit {\_R}^{6} c -12 \textit {\_R}^{4} b c +12 \textit {\_R}^{2} b^{2} c -4 b^{3} c}\right )}{2}\) \(131\)
pseudoelliptic \(-\frac {e \,a^{2} \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\left (-a^{4} d -4 b c \right ) \textit {\_Z}^{6}+6 c \,b^{2} \textit {\_Z}^{4}-4 c \,b^{3} \textit {\_Z}^{2}+b^{4} c \right )}{\sum }\frac {\textit {\_R} \left (\textit {\_R}^{4}+2 \textit {\_R}^{2} b -3 b^{2}\right ) \ln \left (\frac {-\textit {\_R} x +\sqrt {b \,x^{2}+a}}{x}\right )}{-3 \textit {\_R}^{4} a^{4} d +4 \textit {\_R}^{6} c -12 \textit {\_R}^{4} b c +12 \textit {\_R}^{2} b^{2} c -4 b^{3} c}\right )}{2}\) \(131\)

Input:

int((b*x^2+a)^(1/2)*(4*b*e*x^2+a*e)/(c-d*x^2*(b*x^2+a)^3),x,method=_RETURN 
VERBOSE)
 

Output:

-1/2*e*a^2*sum(_R*(_R^4+2*_R^2*b-3*b^2)*ln((-_R*x+(b*x^2+a)^(1/2))/x)/(-3* 
_R^4*a^4*d+4*_R^6*c-12*_R^4*b*c+12*_R^2*b^2*c-4*b^3*c),_R=RootOf(c*_Z^8+(- 
a^4*d-4*b*c)*_Z^6+6*c*b^2*_Z^4-4*c*b^3*_Z^2+b^4*c))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 99 vs. \(2 (26) = 52\).

Time = 0.76 (sec) , antiderivative size = 451, normalized size of antiderivative = 12.53 \[ \int \frac {\sqrt {a+b x^2} \left (a e+4 b e x^2\right )}{c-d x^2 \left (a+b x^2\right )^3} \, dx=\left [\frac {\sqrt {c d} e \log \left (\frac {b^{6} d^{2} x^{16} + 6 \, a b^{5} d^{2} x^{14} + 15 \, a^{2} b^{4} d^{2} x^{12} + 20 \, a^{3} b^{3} d^{2} x^{10} + 3 \, {\left (5 \, a^{4} b^{2} d^{2} + 2 \, b^{3} c d\right )} x^{8} + 6 \, a^{3} c d x^{2} + 6 \, {\left (a^{5} b d^{2} + 3 \, a b^{2} c d\right )} x^{6} + {\left (a^{6} d^{2} + 18 \, a^{2} b c d\right )} x^{4} + 4 \, {\left (b^{4} d x^{11} + 4 \, a b^{3} d x^{9} + 6 \, a^{2} b^{2} d x^{7} + 4 \, a^{3} b d x^{5} + {\left (a^{4} d + b c\right )} x^{3} + a c x\right )} \sqrt {b x^{2} + a} \sqrt {c d} + c^{2}}{b^{6} d^{2} x^{16} + 6 \, a b^{5} d^{2} x^{14} + 15 \, a^{2} b^{4} d^{2} x^{12} + 20 \, a^{3} b^{3} d^{2} x^{10} + {\left (15 \, a^{4} b^{2} d^{2} - 2 \, b^{3} c d\right )} x^{8} - 2 \, a^{3} c d x^{2} + 6 \, {\left (a^{5} b d^{2} - a b^{2} c d\right )} x^{6} + {\left (a^{6} d^{2} - 6 \, a^{2} b c d\right )} x^{4} + c^{2}}\right )}{4 \, c d}, -\frac {\sqrt {-c d} e \arctan \left (\frac {{\left (b^{3} d x^{8} + 3 \, a b^{2} d x^{6} + 3 \, a^{2} b d x^{4} + a^{3} d x^{2} + c\right )} \sqrt {b x^{2} + a} \sqrt {-c d}}{2 \, {\left (b^{2} c d x^{5} + 2 \, a b c d x^{3} + a^{2} c d x\right )}}\right )}{2 \, c d}\right ] \] Input:

integrate((b*x^2+a)^(1/2)*(4*b*e*x^2+a*e)/(c-d*x^2*(b*x^2+a)^3),x, algorit 
hm="fricas")
 

Output:

[1/4*sqrt(c*d)*e*log((b^6*d^2*x^16 + 6*a*b^5*d^2*x^14 + 15*a^2*b^4*d^2*x^1 
2 + 20*a^3*b^3*d^2*x^10 + 3*(5*a^4*b^2*d^2 + 2*b^3*c*d)*x^8 + 6*a^3*c*d*x^ 
2 + 6*(a^5*b*d^2 + 3*a*b^2*c*d)*x^6 + (a^6*d^2 + 18*a^2*b*c*d)*x^4 + 4*(b^ 
4*d*x^11 + 4*a*b^3*d*x^9 + 6*a^2*b^2*d*x^7 + 4*a^3*b*d*x^5 + (a^4*d + b*c) 
*x^3 + a*c*x)*sqrt(b*x^2 + a)*sqrt(c*d) + c^2)/(b^6*d^2*x^16 + 6*a*b^5*d^2 
*x^14 + 15*a^2*b^4*d^2*x^12 + 20*a^3*b^3*d^2*x^10 + (15*a^4*b^2*d^2 - 2*b^ 
3*c*d)*x^8 - 2*a^3*c*d*x^2 + 6*(a^5*b*d^2 - a*b^2*c*d)*x^6 + (a^6*d^2 - 6* 
a^2*b*c*d)*x^4 + c^2))/(c*d), -1/2*sqrt(-c*d)*e*arctan(1/2*(b^3*d*x^8 + 3* 
a*b^2*d*x^6 + 3*a^2*b*d*x^4 + a^3*d*x^2 + c)*sqrt(b*x^2 + a)*sqrt(-c*d)/(b 
^2*c*d*x^5 + 2*a*b*c*d*x^3 + a^2*c*d*x))/(c*d)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x^2} \left (a e+4 b e x^2\right )}{c-d x^2 \left (a+b x^2\right )^3} \, dx=\text {Timed out} \] Input:

integrate((b*x**2+a)**(1/2)*(4*b*e*x**2+a*e)/(c-d*x**2*(b*x**2+a)**3),x)
                                                                                    
                                                                                    
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sqrt {a+b x^2} \left (a e+4 b e x^2\right )}{c-d x^2 \left (a+b x^2\right )^3} \, dx=\int { -\frac {{\left (4 \, b e x^{2} + a e\right )} \sqrt {b x^{2} + a}}{{\left (b x^{2} + a\right )}^{3} d x^{2} - c} \,d x } \] Input:

integrate((b*x^2+a)^(1/2)*(4*b*e*x^2+a*e)/(c-d*x^2*(b*x^2+a)^3),x, algorit 
hm="maxima")
 

Output:

-integrate((4*b*e*x^2 + a*e)*sqrt(b*x^2 + a)/((b*x^2 + a)^3*d*x^2 - c), x)
 

Giac [F]

\[ \int \frac {\sqrt {a+b x^2} \left (a e+4 b e x^2\right )}{c-d x^2 \left (a+b x^2\right )^3} \, dx=\int { -\frac {{\left (4 \, b e x^{2} + a e\right )} \sqrt {b x^{2} + a}}{{\left (b x^{2} + a\right )}^{3} d x^{2} - c} \,d x } \] Input:

integrate((b*x^2+a)^(1/2)*(4*b*e*x^2+a*e)/(c-d*x^2*(b*x^2+a)^3),x, algorit 
hm="giac")
 

Output:

sage0*x
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x^2} \left (a e+4 b e x^2\right )}{c-d x^2 \left (a+b x^2\right )^3} \, dx=\int \frac {\sqrt {b\,x^2+a}\,\left (4\,b\,e\,x^2+a\,e\right )}{c-d\,x^2\,{\left (b\,x^2+a\right )}^3} \,d x \] Input:

int(((a + b*x^2)^(1/2)*(a*e + 4*b*e*x^2))/(c - d*x^2*(a + b*x^2)^3),x)
 

Output:

int(((a + b*x^2)^(1/2)*(a*e + 4*b*e*x^2))/(c - d*x^2*(a + b*x^2)^3), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+b x^2} \left (a e+4 b e x^2\right )}{c-d x^2 \left (a+b x^2\right )^3} \, dx=e \left (-\left (\int \frac {\sqrt {b \,x^{2}+a}}{b^{3} d \,x^{8}+3 a \,b^{2} d \,x^{6}+3 a^{2} b d \,x^{4}+a^{3} d \,x^{2}-c}d x \right ) a -4 \left (\int \frac {\sqrt {b \,x^{2}+a}\, x^{2}}{b^{3} d \,x^{8}+3 a \,b^{2} d \,x^{6}+3 a^{2} b d \,x^{4}+a^{3} d \,x^{2}-c}d x \right ) b \right ) \] Input:

int((b*x^2+a)^(1/2)*(4*b*e*x^2+a*e)/(c-d*x^2*(b*x^2+a)^3),x)
 

Output:

e*( - int(sqrt(a + b*x**2)/(a**3*d*x**2 + 3*a**2*b*d*x**4 + 3*a*b**2*d*x** 
6 + b**3*d*x**8 - c),x)*a - 4*int((sqrt(a + b*x**2)*x**2)/(a**3*d*x**2 + 3 
*a**2*b*d*x**4 + 3*a*b**2*d*x**6 + b**3*d*x**8 - c),x)*b)