\(\int \frac {\sqrt {-x+\sqrt {x} \sqrt {1+x}}}{\sqrt {1+x}} \, dx\) [362]

Optimal result
Mathematica [A] (verified)
Rubi [F]
Maple [F]
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 88 \[ \int \frac {\sqrt {-x+\sqrt {x} \sqrt {1+x}}}{\sqrt {1+x}} \, dx=\frac {1}{2} \sqrt {x} \sqrt {-x+\sqrt {x} \sqrt {1+x}}+\frac {3}{2} \sqrt {1+x} \sqrt {-x+\sqrt {x} \sqrt {1+x}}-\frac {3 \arcsin \left (\sqrt {x}-\sqrt {1+x}\right )}{2 \sqrt {2}} \] Output:

1/2*x^(1/2)*(-x+x^(1/2)*(1+x)^(1/2))^(1/2)+3/2*(1+x)^(1/2)*(-x+x^(1/2)*(1+ 
x)^(1/2))^(1/2)-3/4*arcsin(x^(1/2)-(1+x)^(1/2))*2^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.07 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.03 \[ \int \frac {\sqrt {-x+\sqrt {x} \sqrt {1+x}}}{\sqrt {1+x}} \, dx=\frac {1}{4} \left (2 \left (\sqrt {x}+3 \sqrt {1+x}\right ) \sqrt {-x+\sqrt {x} \sqrt {1+x}}-3 \sqrt {2} \arctan \left (\frac {\sqrt {-2 x+2 \sqrt {x} \sqrt {1+x}}}{-\sqrt {x}+\sqrt {1+x}}\right )\right ) \] Input:

Integrate[Sqrt[-x + Sqrt[x]*Sqrt[1 + x]]/Sqrt[1 + x],x]
 

Output:

(2*(Sqrt[x] + 3*Sqrt[1 + x])*Sqrt[-x + Sqrt[x]*Sqrt[1 + x]] - 3*Sqrt[2]*Ar 
cTan[Sqrt[-2*x + 2*Sqrt[x]*Sqrt[1 + x]]/(-Sqrt[x] + Sqrt[1 + x])])/4
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sqrt {x} \sqrt {x+1}-x}}{\sqrt {x+1}} \, dx\)

\(\Big \downarrow \) 7267

\(\displaystyle 2 \int \sqrt {\sqrt {x} \sqrt {x+1}-x}d\sqrt {x+1}\)

\(\Big \downarrow \) 7299

\(\displaystyle 2 \int \sqrt {\sqrt {x} \sqrt {x+1}-x}d\sqrt {x+1}\)

Input:

Int[Sqrt[-x + Sqrt[x]*Sqrt[1 + x]]/Sqrt[1 + x],x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 

rule 7299
Int[u_, x_] :> CannotIntegrate[u, x]
 
Maple [F]

\[\int \frac {\sqrt {-x +\sqrt {x}\, \sqrt {1+x}}}{\sqrt {1+x}}d x\]

Input:

int((-x+x^(1/2)*(1+x)^(1/2))^(1/2)/(1+x)^(1/2),x)
 

Output:

int((-x+x^(1/2)*(1+x)^(1/2))^(1/2)/(1+x)^(1/2),x)
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {-x+\sqrt {x} \sqrt {1+x}}}{\sqrt {1+x}} \, dx=\text {Timed out} \] Input:

integrate((-x+x^(1/2)*(1+x)^(1/2))^(1/2)/(1+x)^(1/2),x, algorithm="fricas" 
)
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\sqrt {-x+\sqrt {x} \sqrt {1+x}}}{\sqrt {1+x}} \, dx=\int \frac {\sqrt {\sqrt {x} \sqrt {x + 1} - x}}{\sqrt {x + 1}}\, dx \] Input:

integrate((-x+x**(1/2)*(1+x)**(1/2))**(1/2)/(1+x)**(1/2),x)
 

Output:

Integral(sqrt(sqrt(x)*sqrt(x + 1) - x)/sqrt(x + 1), x)
 

Maxima [F]

\[ \int \frac {\sqrt {-x+\sqrt {x} \sqrt {1+x}}}{\sqrt {1+x}} \, dx=\int { \frac {\sqrt {\sqrt {x + 1} \sqrt {x} - x}}{\sqrt {x + 1}} \,d x } \] Input:

integrate((-x+x^(1/2)*(1+x)^(1/2))^(1/2)/(1+x)^(1/2),x, algorithm="maxima" 
)
 

Output:

integrate(sqrt(sqrt(x + 1)*sqrt(x) - x)/sqrt(x + 1), x)
 

Giac [F]

\[ \int \frac {\sqrt {-x+\sqrt {x} \sqrt {1+x}}}{\sqrt {1+x}} \, dx=\int { \frac {\sqrt {\sqrt {x + 1} \sqrt {x} - x}}{\sqrt {x + 1}} \,d x } \] Input:

integrate((-x+x^(1/2)*(1+x)^(1/2))^(1/2)/(1+x)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(sqrt(x + 1)*sqrt(x) - x)/sqrt(x + 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {-x+\sqrt {x} \sqrt {1+x}}}{\sqrt {1+x}} \, dx=\int \frac {\sqrt {\sqrt {x}\,\sqrt {x+1}-x}}{\sqrt {x+1}} \,d x \] Input:

int((x^(1/2)*(x + 1)^(1/2) - x)^(1/2)/(x + 1)^(1/2),x)
 

Output:

int((x^(1/2)*(x + 1)^(1/2) - x)^(1/2)/(x + 1)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {-x+\sqrt {x} \sqrt {1+x}}}{\sqrt {1+x}} \, dx=\int \frac {x^{\frac {1}{4}} \sqrt {x +1}\, \sqrt {\sqrt {x +1}-\sqrt {x}}}{x +1}d x \] Input:

int((-x+x^(1/2)*(1+x)^(1/2))^(1/2)/(1+x)^(1/2),x)
 

Output:

int((x**(1/4)*sqrt(x + 1)*sqrt(sqrt(x + 1) - sqrt(x)))/(x + 1),x)