\(\int \frac {f^{a+b x+c x^2}}{x^2} \, dx\) [365]

Optimal result
Mathematica [N/A]
Rubi [N/A]
Maple [N/A]
Fricas [N/A]
Sympy [N/A]
Maxima [N/A]
Giac [N/A]
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 16, antiderivative size = 16 \[ \int \frac {f^{a+b x+c x^2}}{x^2} \, dx=-\frac {f^{a+b x+c x^2}}{x}+\sqrt {c} f^{a-\frac {b^2}{4 c}} \sqrt {\pi } \text {erfi}\left (\frac {(b+2 c x) \sqrt {\log (f)}}{2 \sqrt {c}}\right ) \sqrt {\log (f)}+b \log (f) \text {Int}\left (\frac {f^{a+b x+c x^2}}{x},x\right ) \] Output:

-f^(c*x^2+b*x+a)/x+c^(1/2)*f^(a-1/4*b^2/c)*Pi^(1/2)*erfi(1/2*(2*c*x+b)*ln( 
f)^(1/2)/c^(1/2))*ln(f)^(1/2)+b*ln(f)*Defer(Int)(f^(c*x^2+b*x+a)/x,x)
 

Mathematica [N/A]

Not integrable

Time = 0.58 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.12 \[ \int \frac {f^{a+b x+c x^2}}{x^2} \, dx=\int \frac {f^{a+b x+c x^2}}{x^2} \, dx \] Input:

Integrate[f^(a + b*x + c*x^2)/x^2,x]
 

Output:

Integrate[f^(a + b*x + c*x^2)/x^2, x]
 

Rubi [N/A]

Not integrable

Time = 0.57 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {2672, 2664, 2633, 2673}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {f^{a+b x+c x^2}}{x^2} \, dx\)

\(\Big \downarrow \) 2672

\(\displaystyle 2 c \log (f) \int f^{c x^2+b x+a}dx+b \log (f) \int \frac {f^{c x^2+b x+a}}{x}dx-\frac {f^{a+b x+c x^2}}{x}\)

\(\Big \downarrow \) 2664

\(\displaystyle 2 c \log (f) f^{a-\frac {b^2}{4 c}} \int f^{\frac {(b+2 c x)^2}{4 c}}dx+b \log (f) \int \frac {f^{c x^2+b x+a}}{x}dx-\frac {f^{a+b x+c x^2}}{x}\)

\(\Big \downarrow \) 2633

\(\displaystyle b \log (f) \int \frac {f^{c x^2+b x+a}}{x}dx+\sqrt {\pi } \sqrt {c} \sqrt {\log (f)} f^{a-\frac {b^2}{4 c}} \text {erfi}\left (\frac {\sqrt {\log (f)} (b+2 c x)}{2 \sqrt {c}}\right )-\frac {f^{a+b x+c x^2}}{x}\)

\(\Big \downarrow \) 2673

\(\displaystyle b \log (f) \int \frac {f^{c x^2+b x+a}}{x}dx+\sqrt {\pi } \sqrt {c} \sqrt {\log (f)} f^{a-\frac {b^2}{4 c}} \text {erfi}\left (\frac {\sqrt {\log (f)} (b+2 c x)}{2 \sqrt {c}}\right )-\frac {f^{a+b x+c x^2}}{x}\)

Input:

Int[f^(a + b*x + c*x^2)/x^2,x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 2633
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{ 
F, a, b, c, d}, x] && PosQ[b]
 

rule 2664
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[F^(a - b^2/ 
(4*c))   Int[F^((b + 2*c*x)^2/(4*c)), x], x] /; FreeQ[{F, a, b, c}, x]
 

rule 2672
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_))^(m_), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*(F^(a + b*x + c*x^2)/(e*(m + 1))), x] + (- 
Simp[2*c*(Log[F]/(e^2*(m + 1)))   Int[(d + e*x)^(m + 2)*F^(a + b*x + c*x^2) 
, x], x] - Simp[(b*e - 2*c*d)*(Log[F]/(e^2*(m + 1)))   Int[(d + e*x)^(m + 1 
)*F^(a + b*x + c*x^2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[b*e - 
 2*c*d, 0] && LtQ[m, -1]
 

rule 2673
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_))^(m_.), x_ 
Symbol] :> Unintegrable[F^(a + b*x + c*x^2)*(d + e*x)^m, x] /; FreeQ[{F, a, 
 b, c, d, e, m}, x]
 
Maple [N/A]

Not integrable

Time = 0.01 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.00

\[\int \frac {f^{c \,x^{2}+b x +a}}{x^{2}}d x\]

Input:

int(f^(c*x^2+b*x+a)/x^2,x)
 

Output:

int(f^(c*x^2+b*x+a)/x^2,x)
 

Fricas [N/A]

Not integrable

Time = 0.08 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.12 \[ \int \frac {f^{a+b x+c x^2}}{x^2} \, dx=\int { \frac {f^{c x^{2} + b x + a}}{x^{2}} \,d x } \] Input:

integrate(f^(c*x^2+b*x+a)/x^2,x, algorithm="fricas")
 

Output:

integral(f^(c*x^2 + b*x + a)/x^2, x)
 

Sympy [N/A]

Not integrable

Time = 0.31 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.94 \[ \int \frac {f^{a+b x+c x^2}}{x^2} \, dx=\int \frac {f^{a + b x + c x^{2}}}{x^{2}}\, dx \] Input:

integrate(f**(c*x**2+b*x+a)/x**2,x)
 

Output:

Integral(f**(a + b*x + c*x**2)/x**2, x)
 

Maxima [N/A]

Not integrable

Time = 0.09 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.12 \[ \int \frac {f^{a+b x+c x^2}}{x^2} \, dx=\int { \frac {f^{c x^{2} + b x + a}}{x^{2}} \,d x } \] Input:

integrate(f^(c*x^2+b*x+a)/x^2,x, algorithm="maxima")
 

Output:

integrate(f^(c*x^2 + b*x + a)/x^2, x)
 

Giac [N/A]

Not integrable

Time = 0.13 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.12 \[ \int \frac {f^{a+b x+c x^2}}{x^2} \, dx=\int { \frac {f^{c x^{2} + b x + a}}{x^{2}} \,d x } \] Input:

integrate(f^(c*x^2+b*x+a)/x^2,x, algorithm="giac")
 

Output:

integrate(f^(c*x^2 + b*x + a)/x^2, x)
 

Mupad [N/A]

Not integrable

Time = 0.16 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.12 \[ \int \frac {f^{a+b x+c x^2}}{x^2} \, dx=\int \frac {f^{c\,x^2+b\,x+a}}{x^2} \,d x \] Input:

int(f^(a + b*x + c*x^2)/x^2,x)
 

Output:

int(f^(a + b*x + c*x^2)/x^2, x)
 

Reduce [N/A]

Not integrable

Time = 0.21 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.31 \[ \int \frac {f^{a+b x+c x^2}}{x^2} \, dx=f^{a} \left (\int \frac {f^{c \,x^{2}+b x}}{x^{2}}d x \right ) \] Input:

int(f^(c*x^2+b*x+a)/x^2,x)
 

Output:

f**a*int(f**(b*x + c*x**2)/x**2,x)