3.3 Integrals 201 to 300

\(\int \genfrac {}{}{}{}{e^{3 i \arctan (a+b x)}}{x^3} \, dx\) [201]
\(\int \genfrac {}{}{}{}{e^{3 i \arctan (a+b x)}}{x^4} \, dx\) [202]
\(\int e^{-i \arctan (a+b x)} x^4 \, dx\) [203]
\(\int e^{-i \arctan (a+b x)} x^3 \, dx\) [204]
\(\int e^{-i \arctan (a+b x)} x^2 \, dx\) [205]
\(\int e^{-i \arctan (a+b x)} x \, dx\) [206]
\(\int e^{-i \arctan (a+b x)} \, dx\) [207]
\(\int \genfrac {}{}{}{}{e^{-i \arctan (a+b x)}}{x} \, dx\) [208]
\(\int \genfrac {}{}{}{}{e^{-i \arctan (a+b x)}}{x^2} \, dx\) [209]
\(\int \genfrac {}{}{}{}{e^{-i \arctan (a+b x)}}{x^3} \, dx\) [210]
\(\int \genfrac {}{}{}{}{e^{-i \arctan (a+b x)}}{x^4} \, dx\) [211]
\(\int e^{-2 i \arctan (a+b x)} x^4 \, dx\) [212]
\(\int e^{-2 i \arctan (a+b x)} x^3 \, dx\) [213]
\(\int e^{-2 i \arctan (a+b x)} x^2 \, dx\) [214]
\(\int e^{-2 i \arctan (a+b x)} x \, dx\) [215]
\(\int e^{-2 i \arctan (a+b x)} \, dx\) [216]
\(\int \genfrac {}{}{}{}{e^{-2 i \arctan (a+b x)}}{x} \, dx\) [217]
\(\int \genfrac {}{}{}{}{e^{-2 i \arctan (a+b x)}}{x^2} \, dx\) [218]
\(\int \genfrac {}{}{}{}{e^{-2 i \arctan (a+b x)}}{x^3} \, dx\) [219]
\(\int \genfrac {}{}{}{}{e^{-2 i \arctan (a+b x)}}{x^4} \, dx\) [220]
\(\int e^{-3 i \arctan (a+b x)} x^4 \, dx\) [221]
\(\int e^{-3 i \arctan (a+b x)} x^3 \, dx\) [222]
\(\int e^{-3 i \arctan (a+b x)} x^2 \, dx\) [223]
\(\int e^{-3 i \arctan (a+b x)} x \, dx\) [224]
\(\int e^{-3 i \arctan (a+b x)} \, dx\) [225]
\(\int \genfrac {}{}{}{}{e^{-3 i \arctan (a+b x)}}{x} \, dx\) [226]
\(\int \genfrac {}{}{}{}{e^{-3 i \arctan (a+b x)}}{x^2} \, dx\) [227]
\(\int \genfrac {}{}{}{}{e^{-3 i \arctan (a+b x)}}{x^3} \, dx\) [228]
\(\int \genfrac {}{}{}{}{e^{-3 i \arctan (a+b x)}}{x^4} \, dx\) [229]
\(\int e^{\genfrac {}{}{}{}{1}{2} i \arctan (a+b x)} x^2 \, dx\) [230]
\(\int e^{\genfrac {}{}{}{}{1}{2} i \arctan (a+b x)} x \, dx\) [231]
\(\int e^{\genfrac {}{}{}{}{1}{2} i \arctan (a+b x)} \, dx\) [232]
\(\int \genfrac {}{}{}{}{e^{\genfrac {}{}{}{}{1}{2} i \arctan (a+b x)}}{x} \, dx\) [233]
\(\int \genfrac {}{}{}{}{e^{\genfrac {}{}{}{}{1}{2} i \arctan (a+b x)}}{x^2} \, dx\) [234]
\(\int e^{\genfrac {}{}{}{}{3}{2} i \arctan (a+b x)} x^2 \, dx\) [235]
\(\int e^{\genfrac {}{}{}{}{3}{2} i \arctan (a+b x)} x \, dx\) [236]
\(\int e^{\genfrac {}{}{}{}{3}{2} i \arctan (a+b x)} \, dx\) [237]
\(\int \genfrac {}{}{}{}{e^{\genfrac {}{}{}{}{3}{2} i \arctan (a+b x)}}{x} \, dx\) [238]
\(\int \genfrac {}{}{}{}{e^{\genfrac {}{}{}{}{3}{2} i \arctan (a+b x)}}{x^2} \, dx\) [239]
\(\int e^{-\genfrac {}{}{}{}{1}{2} i \arctan (a+b x)} x^2 \, dx\) [240]
\(\int e^{-\genfrac {}{}{}{}{1}{2} i \arctan (a+b x)} x \, dx\) [241]
\(\int e^{-\genfrac {}{}{}{}{1}{2} i \arctan (a+b x)} \, dx\) [242]
\(\int \genfrac {}{}{}{}{e^{-\genfrac {}{}{}{}{1}{2} i \arctan (a+b x)}}{x} \, dx\) [243]
\(\int \genfrac {}{}{}{}{e^{-\genfrac {}{}{}{}{1}{2} i \arctan (a+b x)}}{x^2} \, dx\) [244]
\(\int e^{-\genfrac {}{}{}{}{3}{2} i \arctan (a+b x)} x^2 \, dx\) [245]
\(\int e^{-\genfrac {}{}{}{}{3}{2} i \arctan (a+b x)} x \, dx\) [246]
\(\int e^{-\genfrac {}{}{}{}{3}{2} i \arctan (a+b x)} \, dx\) [247]
\(\int \genfrac {}{}{}{}{e^{-\genfrac {}{}{}{}{3}{2} i \arctan (a+b x)}}{x} \, dx\) [248]
\(\int \genfrac {}{}{}{}{e^{-\genfrac {}{}{}{}{3}{2} i \arctan (a+b x)}}{x^2} \, dx\) [249]
\(\int e^{n \arctan (a+b x)} x^m \, dx\) [250]
\(\int e^{n \arctan (a+b x)} x^3 \, dx\) [251]
\(\int e^{n \arctan (a+b x)} x^2 \, dx\) [252]
\(\int e^{n \arctan (a+b x)} x \, dx\) [253]
\(\int e^{n \arctan (a+b x)} \, dx\) [254]
\(\int \genfrac {}{}{}{}{e^{n \arctan (a+b x)}}{x} \, dx\) [255]
\(\int \genfrac {}{}{}{}{e^{n \arctan (a+b x)}}{x^2} \, dx\) [256]
\(\int \genfrac {}{}{}{}{e^{n \arctan (a+b x)}}{x^3} \, dx\) [257]
\(\int e^{\arctan (a x)} (c+a^2 c x^2)^p \, dx\) [258]
\(\int e^{\arctan (a x)} (c+a^2 c x^2)^2 \, dx\) [259]
\(\int e^{\arctan (a x)} (c+a^2 c x^2) \, dx\) [260]
\(\int e^{\arctan (a x)} \, dx\) [261]
\(\int \genfrac {}{}{}{}{e^{\arctan (a x)}}{c+a^2 c x^2} \, dx\) [262]
\(\int \genfrac {}{}{}{}{e^{\arctan (a x)}}{(c+a^2 c x^2)^2} \, dx\) [263]
\(\int \genfrac {}{}{}{}{e^{\arctan (a x)}}{(c+a^2 c x^2)^3} \, dx\) [264]
\(\int \genfrac {}{}{}{}{e^{\arctan (a x)}}{(c+a^2 c x^2)^4} \, dx\) [265]
\(\int \genfrac {}{}{}{}{e^{\arctan (a x)}}{(c+a^2 c x^2)^5} \, dx\) [266]
\(\int e^{\arctan (a x)} (c+a^2 c x^2)^{3/2} \, dx\) [267]
\(\int e^{\arctan (a x)} \sqrt {c+a^2 c x^2} \, dx\) [268]
\(\int \genfrac {}{}{}{}{e^{\arctan (a x)}}{\sqrt {c+a^2 c x^2}} \, dx\) [269]
\(\int \genfrac {}{}{}{}{e^{\arctan (a x)}}{(c+a^2 c x^2)^{3/2}} \, dx\) [270]
\(\int \genfrac {}{}{}{}{e^{\arctan (a x)}}{(c+a^2 c x^2)^{5/2}} \, dx\) [271]
\(\int \genfrac {}{}{}{}{e^{\arctan (a x)}}{(c+a^2 c x^2)^{7/2}} \, dx\) [272]
\(\int e^{2 \arctan (a x)} (c+a^2 c x^2)^p \, dx\) [273]
\(\int e^{2 \arctan (a x)} (c+a^2 c x^2)^2 \, dx\) [274]
\(\int e^{2 \arctan (a x)} (c+a^2 c x^2) \, dx\) [275]
\(\int e^{2 \arctan (a x)} \, dx\) [276]
\(\int \genfrac {}{}{}{}{e^{2 \arctan (a x)}}{c+a^2 c x^2} \, dx\) [277]
\(\int \genfrac {}{}{}{}{e^{2 \arctan (a x)}}{(c+a^2 c x^2)^2} \, dx\) [278]
\(\int \genfrac {}{}{}{}{e^{2 \arctan (a x)}}{(c+a^2 c x^2)^3} \, dx\) [279]
\(\int \genfrac {}{}{}{}{e^{2 \arctan (a x)}}{(c+a^2 c x^2)^4} \, dx\) [280]
\(\int e^{2 \arctan (a x)} (c+a^2 c x^2)^{3/2} \, dx\) [281]
\(\int e^{2 \arctan (a x)} \sqrt {c+a^2 c x^2} \, dx\) [282]
\(\int \genfrac {}{}{}{}{e^{2 \arctan (a x)}}{\sqrt {c+a^2 c x^2}} \, dx\) [283]
\(\int \genfrac {}{}{}{}{e^{2 \arctan (a x)}}{(c+a^2 c x^2)^{3/2}} \, dx\) [284]
\(\int \genfrac {}{}{}{}{e^{2 \arctan (a x)}}{(c+a^2 c x^2)^{5/2}} \, dx\) [285]
\(\int \genfrac {}{}{}{}{e^{2 \arctan (a x)}}{(c+a^2 c x^2)^{7/2}} \, dx\) [286]
\(\int e^{-\arctan (a x)} (c+a^2 c x^2)^p \, dx\) [287]
\(\int e^{-\arctan (a x)} (c+a^2 c x^2)^2 \, dx\) [288]
\(\int e^{-\arctan (a x)} (c+a^2 c x^2) \, dx\) [289]
\(\int e^{-\arctan (a x)} \, dx\) [290]
\(\int \genfrac {}{}{}{}{e^{-\arctan (a x)}}{c+a^2 c x^2} \, dx\) [291]
\(\int \genfrac {}{}{}{}{e^{-\arctan (a x)}}{(c+a^2 c x^2)^2} \, dx\) [292]
\(\int \genfrac {}{}{}{}{e^{-\arctan (a x)}}{(c+a^2 c x^2)^3} \, dx\) [293]
\(\int \genfrac {}{}{}{}{e^{-\arctan (a x)}}{(c+a^2 c x^2)^4} \, dx\) [294]
\(\int e^{-\arctan (a x)} (c+a^2 c x^2)^{3/2} \, dx\) [295]
\(\int e^{-\arctan (a x)} \sqrt {c+a^2 c x^2} \, dx\) [296]
\(\int \genfrac {}{}{}{}{e^{-\arctan (a x)}}{\sqrt {c+a^2 c x^2}} \, dx\) [297]
\(\int \genfrac {}{}{}{}{e^{-\arctan (a x)}}{(c+a^2 c x^2)^{3/2}} \, dx\) [298]
\(\int \genfrac {}{}{}{}{e^{-\arctan (a x)}}{(c+a^2 c x^2)^{5/2}} \, dx\) [299]
\(\int \genfrac {}{}{}{}{e^{-\arctan (a x)}}{(c+a^2 c x^2)^{7/2}} \, dx\) [300]