\(\int e^{3 i \arctan (a+b x)} \, dx\) [198]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 12, antiderivative size = 94 \[ \int e^{3 i \arctan (a+b x)} \, dx=-\frac {3 i \sqrt {1-i a-i b x} \sqrt {1+i a+i b x}}{b}-\frac {2 i (1+i a+i b x)^{3/2}}{b \sqrt {1-i a-i b x}}-\frac {3 \text {arcsinh}(a+b x)}{b} \] Output:

-3*I*(1-I*a-I*b*x)^(1/2)*(1+I*a+I*b*x)^(1/2)/b-2*I*(1+I*a+I*b*x)^(3/2)/b/( 
1-I*a-I*b*x)^(1/2)-3*arcsinh(b*x+a)/b
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.48 \[ \int e^{3 i \arctan (a+b x)} \, dx=\frac {\sqrt {1+(a+b x)^2} \left (-i+\frac {4}{i+a+b x}\right )}{b}-\frac {3 \text {arcsinh}(a+b x)}{b} \] Input:

Integrate[E^((3*I)*ArcTan[a + b*x]),x]
 

Output:

(Sqrt[1 + (a + b*x)^2]*(-I + 4/(I + a + b*x)))/b - (3*ArcSinh[a + b*x])/b
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.16, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5616, 57, 60, 62, 1090, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int e^{3 i \arctan (a+b x)} \, dx\)

\(\Big \downarrow \) 5616

\(\displaystyle \int \frac {(i a+i b x+1)^{3/2}}{(-i a-i b x+1)^{3/2}}dx\)

\(\Big \downarrow \) 57

\(\displaystyle -3 \int \frac {\sqrt {i a+i b x+1}}{\sqrt {-i a-i b x+1}}dx-\frac {2 i (i a+i b x+1)^{3/2}}{b \sqrt {-i a-i b x+1}}\)

\(\Big \downarrow \) 60

\(\displaystyle -3 \left (\int \frac {1}{\sqrt {-i a-i b x+1} \sqrt {i a+i b x+1}}dx+\frac {i \sqrt {-i a-i b x+1} \sqrt {i a+i b x+1}}{b}\right )-\frac {2 i (i a+i b x+1)^{3/2}}{b \sqrt {-i a-i b x+1}}\)

\(\Big \downarrow \) 62

\(\displaystyle -3 \left (\int \frac {1}{\sqrt {b^2 x^2+2 a b x+(1-i a) (i a+1)}}dx+\frac {i \sqrt {-i a-i b x+1} \sqrt {i a+i b x+1}}{b}\right )-\frac {2 i (i a+i b x+1)^{3/2}}{b \sqrt {-i a-i b x+1}}\)

\(\Big \downarrow \) 1090

\(\displaystyle -3 \left (\frac {\int \frac {1}{\sqrt {\frac {\left (2 x b^2+2 a b\right )^2}{4 b^2}+1}}d\left (2 x b^2+2 a b\right )}{2 b^2}+\frac {i \sqrt {-i a-i b x+1} \sqrt {i a+i b x+1}}{b}\right )-\frac {2 i (i a+i b x+1)^{3/2}}{b \sqrt {-i a-i b x+1}}\)

\(\Big \downarrow \) 222

\(\displaystyle -3 \left (\frac {\text {arcsinh}\left (\frac {2 a b+2 b^2 x}{2 b}\right )}{b}+\frac {i \sqrt {-i a-i b x+1} \sqrt {i a+i b x+1}}{b}\right )-\frac {2 i (i a+i b x+1)^{3/2}}{b \sqrt {-i a-i b x+1}}\)

Input:

Int[E^((3*I)*ArcTan[a + b*x]),x]
 

Output:

((-2*I)*(1 + I*a + I*b*x)^(3/2))/(b*Sqrt[1 - I*a - I*b*x]) - 3*((I*Sqrt[1 
- I*a - I*b*x]*Sqrt[1 + I*a + I*b*x])/b + ArcSinh[(2*a*b + 2*b^2*x)/(2*b)] 
/b)
 

Defintions of rubi rules used

rule 57
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] & 
& GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m 
+ n + 2, 0] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c 
, d, m, n, x]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 62
Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Int[ 
1/Sqrt[a*c - b*(a - c)*x - b^2*x^2], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b 
+ d, 0] && GtQ[a + c, 0]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 1090
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/(2*c*(-4* 
(c/(b^2 - 4*a*c)))^p)   Subst[Int[Simp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, 
b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]
 

rule 5616
Int[E^(ArcTan[(c_.)*((a_) + (b_.)*(x_))]*(n_.)), x_Symbol] :> Int[(1 - I*a* 
c - I*b*c*x)^(I*(n/2))/(1 + I*a*c + I*b*c*x)^(I*(n/2)), x] /; FreeQ[{a, b, 
c, n}, x]
 
Maple [A] (verified)

Time = 0.78 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.28

method result size
risch \(-\frac {i \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}{b}+\frac {4 \sqrt {\left (x +\frac {i+a}{b}\right )^{2} b^{2}-2 i b \left (x +\frac {i+a}{b}\right )}}{b^{2} \left (x +\frac {i+a}{b}\right )}-\frac {3 \ln \left (\frac {b^{2} x +a b}{\sqrt {b^{2}}}+\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\right )}{\sqrt {b^{2}}}\) \(120\)
default \(\frac {2 \left (i a +1\right )^{3} \left (2 b^{2} x +2 a b \right )}{\left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-i b^{3} \left (\frac {x^{2}}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {3 a \left (-\frac {x}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {a \left (-\frac {1}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {2 a \left (2 b^{2} x +2 a b \right )}{b \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}\right )}{b}+\frac {\ln \left (\frac {b^{2} x +a b}{\sqrt {b^{2}}}+\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\right )}{b^{2} \sqrt {b^{2}}}\right )}{b}-\frac {2 \left (a^{2}+1\right ) \left (-\frac {1}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {2 a \left (2 b^{2} x +2 a b \right )}{b \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}\right )}{b^{2}}\right )+3 i \left (i a +1\right )^{2} b \left (-\frac {1}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {2 a \left (2 b^{2} x +2 a b \right )}{b \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}\right )-3 \left (i a +1\right ) b^{2} \left (-\frac {x}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {a \left (-\frac {1}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {2 a \left (2 b^{2} x +2 a b \right )}{b \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}\right )}{b}+\frac {\ln \left (\frac {b^{2} x +a b}{\sqrt {b^{2}}}+\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\right )}{b^{2} \sqrt {b^{2}}}\right )\) \(617\)

Input:

int((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-I/b*(b^2*x^2+2*a*b*x+a^2+1)^(1/2)+4/b^2/(x+(I+a)/b)*((x+(I+a)/b)^2*b^2-2* 
I*b*(x+(I+a)/b))^(1/2)-3*ln((b^2*x+a*b)/(b^2)^(1/2)+(b^2*x^2+2*a*b*x+a^2+1 
)^(1/2))/(b^2)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.05 \[ \int e^{3 i \arctan (a+b x)} \, dx=\frac {{\left (-i \, a + 8\right )} b x - i \, a^{2} + 6 \, {\left (b x + a + i\right )} \log \left (-b x - a + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1}\right ) - 2 \, \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} {\left (i \, b x + i \, a - 5\right )} + 9 \, a + 8 i}{2 \, {\left (b^{2} x + {\left (a + i\right )} b\right )}} \] Input:

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x, algorithm="fricas")
 

Output:

1/2*((-I*a + 8)*b*x - I*a^2 + 6*(b*x + a + I)*log(-b*x - a + sqrt(b^2*x^2 
+ 2*a*b*x + a^2 + 1)) - 2*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*(I*b*x + I*a - 
 5) + 9*a + 8*I)/(b^2*x + (a + I)*b)
 

Sympy [F]

\[ \int e^{3 i \arctan (a+b x)} \, dx =\text {Too large to display} \] Input:

integrate((1+I*(b*x+a))**3/(1+(b*x+a)**2)**(3/2),x)
 

Output:

-I*(Integral(I/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a 
**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 
 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(-3*a/(a**2*sq 
rt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x* 
*2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a 
*b*x + b**2*x**2 + 1)), x) + Integral(a**3/(a**2*sqrt(a**2 + 2*a*b*x + b** 
2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqr 
t(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), 
 x) + Integral(-3*I*a**2/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a* 
b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + 
 b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(-3* 
b*x/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b 
*x + b**2*x**2 + 1) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqr 
t(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(b**3*x**3/(a**2*sqrt(a** 
2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1 
) + b**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + 
 b**2*x**2 + 1)), x) + Integral(-3*I*b**2*x**2/(a**2*sqrt(a**2 + 2*a*b*x + 
 b**2*x**2 + 1) + 2*a*b*x*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**2 
*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 
1)), x) + Integral(3*a*b**2*x**2/(a**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 ...
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 736 vs. \(2 (66) = 132\).

Time = 0.04 (sec) , antiderivative size = 736, normalized size of antiderivative = 7.83 \[ \int e^{3 i \arctan (a+b x)} \, dx =\text {Too large to display} \] Input:

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

-6*I*a^3*b^2*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1 
)) + 5*I*(a^2 + 1)*a*b^2*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b 
*x + a^2 + 1)) - I*(a^2 + 1)*a^2*b/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 
 + 2*a*b*x + a^2 + 1)) + 6*(I*a*b^2 + b^2)*a^2*x/((a^2*b^2 - (a^2 + 1)*b^2 
)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - 3*(I*a^2*b + 2*a*b - I*b)*a*b*x/((a 
^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) + (I*a^3 + 3*a^ 
2 - 3*I*a - 1)*b^2*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a 
^2 + 1)) - I*b*x^2/sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1) - 3*(I*a^2*b + 2*a*b 
- I*b)*a^2/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - 
 (-I*a^3 - 3*a^2 + 3*I*a + 1)*a*b/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 
+ 2*a*b*x + a^2 + 1)) - 3*(I*a*b^2 + b^2)*(a^2 + 1)*x/((a^2*b^2 - (a^2 + 1 
)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) + 3*I*a*arcsinh(2*(b^2*x + a*b)/ 
sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2))/b + 3*(I*a*b^2 + b^2)*(a^2 + 1)*a/((a^ 
2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*b) - 2*(I*a^2 + I 
)/(sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*b) - 3*(I*a*b^2 + b^2)*arcsinh(2*(b^2 
*x + a*b)/sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2))/b^3 + 3*(I*a^2*b + 2*a*b - I 
*b)/(sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*b^2)
 

Giac [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 180 vs. \(2 (66) = 132\).

Time = 0.16 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.91 \[ \int e^{3 i \arctan (a+b x)} \, dx=\frac {\log \left (3 \, {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )}^{2} a b + a^{3} b + {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )}^{3} {\left | b \right |} + 3 \, {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )} a^{2} {\left | b \right |} + 2 i \, {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )}^{2} b + 2 i \, a^{2} b + 4 \, {\left (i \, x {\left | b \right |} - i \, \sqrt {{\left (b x + a\right )}^{2} + 1}\right )} a {\left | b \right |} - a b - {\left (x {\left | b \right |} - \sqrt {{\left (b x + a\right )}^{2} + 1}\right )} {\left | b \right |}\right )}{{\left | b \right |}} - \frac {i \, \sqrt {{\left (b x + a\right )}^{2} + 1}}{b} \] Input:

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x, algorithm="giac")
 

Output:

log(3*(x*abs(b) - sqrt((b*x + a)^2 + 1))^2*a*b + a^3*b + (x*abs(b) - sqrt( 
(b*x + a)^2 + 1))^3*abs(b) + 3*(x*abs(b) - sqrt((b*x + a)^2 + 1))*a^2*abs( 
b) + 2*I*(x*abs(b) - sqrt((b*x + a)^2 + 1))^2*b + 2*I*a^2*b + 4*(I*x*abs(b 
) - I*sqrt((b*x + a)^2 + 1))*a*abs(b) - a*b - (x*abs(b) - sqrt((b*x + a)^2 
 + 1))*abs(b))/abs(b) - I*sqrt((b*x + a)^2 + 1)/b
 

Mupad [F(-1)]

Timed out. \[ \int e^{3 i \arctan (a+b x)} \, dx=\int \frac {{\left (1+a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}\right )}^3}{{\left ({\left (a+b\,x\right )}^2+1\right )}^{3/2}} \,d x \] Input:

int((a*1i + b*x*1i + 1)^3/((a + b*x)^2 + 1)^(3/2),x)
 

Output:

int((a*1i + b*x*1i + 1)^3/((a + b*x)^2 + 1)^(3/2), x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 298, normalized size of antiderivative = 3.17 \[ \int e^{3 i \arctan (a+b x)} \, dx=\frac {-\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\, a^{2} i -2 \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\, a b i x +4 \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\, a -\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\, b^{2} i \,x^{2}+4 \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\, b x -5 \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\, i -3 \,\mathrm {log}\left (\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}+a +b x \right ) a^{2}-6 \,\mathrm {log}\left (\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}+a +b x \right ) a b x -3 \,\mathrm {log}\left (\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}+a +b x \right ) b^{2} x^{2}-3 \,\mathrm {log}\left (\sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}+a +b x \right )+4 a^{2}+8 a b x +4 b^{2} x^{2}+4}{b \left (b^{2} x^{2}+2 a b x +a^{2}+1\right )} \] Input:

int((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2),x)
 

Output:

( - sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*a**2*i - 2*sqrt(a**2 + 2*a*b*x + 
b**2*x**2 + 1)*a*b*i*x + 4*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*a - sqrt(a 
**2 + 2*a*b*x + b**2*x**2 + 1)*b**2*i*x**2 + 4*sqrt(a**2 + 2*a*b*x + b**2* 
x**2 + 1)*b*x - 5*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*i - 3*log(sqrt(a**2 
 + 2*a*b*x + b**2*x**2 + 1) + a + b*x)*a**2 - 6*log(sqrt(a**2 + 2*a*b*x + 
b**2*x**2 + 1) + a + b*x)*a*b*x - 3*log(sqrt(a**2 + 2*a*b*x + b**2*x**2 + 
1) + a + b*x)*b**2*x**2 - 3*log(sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + a + 
 b*x) + 4*a**2 + 8*a*b*x + 4*b**2*x**2 + 4)/(b*(a**2 + 2*a*b*x + b**2*x**2 
 + 1))