\(\int \frac {e^{3 i \arctan (a+b x)}}{x^2} \, dx\) [200]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 16, antiderivative size = 176 \[ \int \frac {e^{3 i \arctan (a+b x)}}{x^2} \, dx=-\frac {6 i b \sqrt {1+i a+i b x}}{(i+a)^2 \sqrt {1-i a-i b x}}-\frac {(1+i a+i b x)^{3/2}}{(1-i a) x \sqrt {1-i a-i b x}}+\frac {6 i \sqrt {i-a} b \text {arctanh}\left (\frac {\sqrt {i+a} \sqrt {1+i a+i b x}}{\sqrt {i-a} \sqrt {1-i a-i b x}}\right )}{(i+a)^{5/2}} \] Output:

-6*I*b*(1+I*a+I*b*x)^(1/2)/(I+a)^2/(1-I*a-I*b*x)^(1/2)-(1+I*a+I*b*x)^(3/2) 
/(1-I*a)/x/(1-I*a-I*b*x)^(1/2)+6*I*(I-a)^(1/2)*b*arctanh((I+a)^(1/2)*(1+I* 
a+I*b*x)^(1/2)/(I-a)^(1/2)/(1-I*a-I*b*x)^(1/2))/(I+a)^(5/2)
 

Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.82 \[ \int \frac {e^{3 i \arctan (a+b x)}}{x^2} \, dx=\frac {\frac {\sqrt {1+i a+i b x} \left (1+a^2-5 i b x+a b x\right )}{x \sqrt {-i (i+a+b x)}}+\frac {6 i \sqrt {-1-i a} b \text {arctanh}\left (\frac {\sqrt {-1-i a} \sqrt {-i (i+a+b x)}}{\sqrt {-1+i a} \sqrt {1+i a+i b x}}\right )}{\sqrt {-1+i a}}}{(i+a)^2} \] Input:

Integrate[E^((3*I)*ArcTan[a + b*x])/x^2,x]
 

Output:

((Sqrt[1 + I*a + I*b*x]*(1 + a^2 - (5*I)*b*x + a*b*x))/(x*Sqrt[(-I)*(I + a 
 + b*x)]) + ((6*I)*Sqrt[-1 - I*a]*b*ArcTanh[(Sqrt[-1 - I*a]*Sqrt[(-I)*(I + 
 a + b*x)])/(Sqrt[-1 + I*a]*Sqrt[1 + I*a + I*b*x])])/Sqrt[-1 + I*a])/(I + 
a)^2
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.05, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {5618, 105, 105, 104, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{3 i \arctan (a+b x)}}{x^2} \, dx\)

\(\Big \downarrow \) 5618

\(\displaystyle \int \frac {(i a+i b x+1)^{3/2}}{x^2 (-i a-i b x+1)^{3/2}}dx\)

\(\Big \downarrow \) 105

\(\displaystyle -\frac {3 b \int \frac {\sqrt {i a+i b x+1}}{x (-i a-i b x+1)^{3/2}}dx}{a+i}-\frac {(i a+i b x+1)^{3/2}}{(1-i a) x \sqrt {-i a-i b x+1}}\)

\(\Big \downarrow \) 105

\(\displaystyle -\frac {3 b \left (\frac {(-a+i) \int \frac {1}{x \sqrt {-i a-i b x+1} \sqrt {i a+i b x+1}}dx}{a+i}+\frac {2 \sqrt {i a+i b x+1}}{(1-i a) \sqrt {-i a-i b x+1}}\right )}{a+i}-\frac {(i a+i b x+1)^{3/2}}{(1-i a) x \sqrt {-i a-i b x+1}}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {3 b \left (\frac {2 (-a+i) \int \frac {1}{-i a+\frac {(1-i a) (i a+i b x+1)}{-i a-i b x+1}-1}d\frac {\sqrt {i a+i b x+1}}{\sqrt {-i a-i b x+1}}}{a+i}+\frac {2 \sqrt {i a+i b x+1}}{(1-i a) \sqrt {-i a-i b x+1}}\right )}{a+i}-\frac {(i a+i b x+1)^{3/2}}{(1-i a) x \sqrt {-i a-i b x+1}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {3 b \left (\frac {2 \sqrt {i a+i b x+1}}{(1-i a) \sqrt {-i a-i b x+1}}-\frac {2 i \sqrt {-a+i} \text {arctanh}\left (\frac {\sqrt {a+i} \sqrt {i a+i b x+1}}{\sqrt {-a+i} \sqrt {-i a-i b x+1}}\right )}{(a+i)^{3/2}}\right )}{a+i}-\frac {(i a+i b x+1)^{3/2}}{(1-i a) x \sqrt {-i a-i b x+1}}\)

Input:

Int[E^((3*I)*ArcTan[a + b*x])/x^2,x]
 

Output:

-((1 + I*a + I*b*x)^(3/2)/((1 - I*a)*x*Sqrt[1 - I*a - I*b*x])) - (3*b*((2* 
Sqrt[1 + I*a + I*b*x])/((1 - I*a)*Sqrt[1 - I*a - I*b*x]) - ((2*I)*Sqrt[I - 
 a]*ArcTanh[(Sqrt[I + a]*Sqrt[1 + I*a + I*b*x])/(Sqrt[I - a]*Sqrt[1 - I*a 
- I*b*x])])/(I + a)^(3/2)))/(I + a)
 

Defintions of rubi rules used

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 105
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[n*((d*e - c*f)/((m + 1)*(b*e - a*f)))   Int[(a 
+ b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, 
e, f, m, p}, x] && EqQ[m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] 
 ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 5618
Int[E^(ArcTan[(c_.)*((a_) + (b_.)*(x_))]*(n_.))*((d_.) + (e_.)*(x_))^(m_.), 
 x_Symbol] :> Int[(d + e*x)^m*((1 - I*a*c - I*b*c*x)^(I*(n/2))/(1 + I*a*c + 
 I*b*c*x)^(I*(n/2))), x] /; FreeQ[{a, b, c, d, e, m, n}, x]
 
Maple [A] (verified)

Time = 1.80 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.99

method result size
risch \(\frac {i \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}\, \left (-i+a \right )}{\left (i+a \right )^{2} x}+\frac {b \left (-\frac {3 \sqrt {a^{2}+1}\, \ln \left (\frac {2 a^{2}+2+2 a b x +2 \sqrt {a^{2}+1}\, \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}{x}\right )}{i+a}-\frac {4 i \left (i a -1\right ) \sqrt {\left (x +\frac {i+a}{b}\right )^{2} b^{2}-2 i b \left (x +\frac {i+a}{b}\right )}}{b \left (i+a \right ) \left (x +\frac {i+a}{b}\right )}\right )}{a^{2}+2 i a -1}\) \(174\)
default \(\left (-i a^{3}-3 a^{2}+3 i a +1\right ) \left (-\frac {1}{\left (a^{2}+1\right ) x \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {3 a b \left (\frac {1}{\left (a^{2}+1\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {2 a b \left (2 b^{2} x +2 a b \right )}{\left (a^{2}+1\right ) \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {\ln \left (\frac {2 a^{2}+2+2 a b x +2 \sqrt {a^{2}+1}\, \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}{x}\right )}{\left (a^{2}+1\right )^{\frac {3}{2}}}\right )}{a^{2}+1}-\frac {4 b^{2} \left (2 b^{2} x +2 a b \right )}{\left (a^{2}+1\right ) \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}\right )-\frac {6 i a \,b^{2} \left (2 b^{2} x +2 a b \right )}{\left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-i b^{3} \left (-\frac {1}{b^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {2 a \left (2 b^{2} x +2 a b \right )}{b \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}\right )-\frac {6 b^{2} \left (2 b^{2} x +2 a b \right )}{\left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-3 b \left (i a^{2}+2 a -i\right ) \left (\frac {1}{\left (a^{2}+1\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {2 a b \left (2 b^{2} x +2 a b \right )}{\left (a^{2}+1\right ) \left (4 b^{2} \left (a^{2}+1\right )-4 a^{2} b^{2}\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}-\frac {\ln \left (\frac {2 a^{2}+2+2 a b x +2 \sqrt {a^{2}+1}\, \sqrt {b^{2} x^{2}+2 a b x +a^{2}+1}}{x}\right )}{\left (a^{2}+1\right )^{\frac {3}{2}}}\right )\) \(631\)

Input:

int((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2)/x^2,x,method=_RETURNVERBOSE)
 

Output:

I*(b^2*x^2+2*a*b*x+a^2+1)^(1/2)*(-I+a)/(I+a)^2/x+1/(a^2-1+2*I*a)*b*(-3*(a^ 
2+1)^(1/2)/(I+a)*ln((2*a^2+2+2*a*b*x+2*(a^2+1)^(1/2)*(b^2*x^2+2*a*b*x+a^2+ 
1)^(1/2))/x)-4*I*(I*a-1)/b/(I+a)/(x+(I+a)/b)*((x+(I+a)/b)^2*b^2-2*I*b*(x+( 
I+a)/b))^(1/2))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 389 vs. \(2 (116) = 232\).

Time = 0.14 (sec) , antiderivative size = 389, normalized size of antiderivative = 2.21 \[ \int \frac {e^{3 i \arctan (a+b x)}}{x^2} \, dx=-\frac {{\left (-i \, a - 5\right )} b^{2} x^{2} + {\left (-i \, a^{2} - 4 \, a - 5 i\right )} b x - 3 \, {\left ({\left (a^{2} + 2 i \, a - 1\right )} b x^{2} + {\left (a^{3} + 3 i \, a^{2} - 3 \, a - i\right )} x\right )} \sqrt {\frac {{\left (a - i\right )} b^{2}}{a^{5} + 5 i \, a^{4} - 10 \, a^{3} - 10 i \, a^{2} + 5 \, a + i}} \log \left (-\frac {b^{2} x + {\left (a^{3} + 3 i \, a^{2} - 3 \, a - i\right )} \sqrt {\frac {{\left (a - i\right )} b^{2}}{a^{5} + 5 i \, a^{4} - 10 \, a^{3} - 10 i \, a^{2} + 5 \, a + i}} - \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} b}{b}\right ) + 3 \, {\left ({\left (a^{2} + 2 i \, a - 1\right )} b x^{2} + {\left (a^{3} + 3 i \, a^{2} - 3 \, a - i\right )} x\right )} \sqrt {\frac {{\left (a - i\right )} b^{2}}{a^{5} + 5 i \, a^{4} - 10 \, a^{3} - 10 i \, a^{2} + 5 \, a + i}} \log \left (-\frac {b^{2} x - {\left (a^{3} + 3 i \, a^{2} - 3 \, a - i\right )} \sqrt {\frac {{\left (a - i\right )} b^{2}}{a^{5} + 5 i \, a^{4} - 10 \, a^{3} - 10 i \, a^{2} + 5 \, a + i}} - \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} b}{b}\right ) + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} + 1} {\left ({\left (-i \, a - 5\right )} b x - i \, a^{2} - i\right )}}{{\left (a^{2} + 2 i \, a - 1\right )} b x^{2} + {\left (a^{3} + 3 i \, a^{2} - 3 \, a - i\right )} x} \] Input:

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2)/x^2,x, algorithm="fricas")
 

Output:

-((-I*a - 5)*b^2*x^2 + (-I*a^2 - 4*a - 5*I)*b*x - 3*((a^2 + 2*I*a - 1)*b*x 
^2 + (a^3 + 3*I*a^2 - 3*a - I)*x)*sqrt((a - I)*b^2/(a^5 + 5*I*a^4 - 10*a^3 
 - 10*I*a^2 + 5*a + I))*log(-(b^2*x + (a^3 + 3*I*a^2 - 3*a - I)*sqrt((a - 
I)*b^2/(a^5 + 5*I*a^4 - 10*a^3 - 10*I*a^2 + 5*a + I)) - sqrt(b^2*x^2 + 2*a 
*b*x + a^2 + 1)*b)/b) + 3*((a^2 + 2*I*a - 1)*b*x^2 + (a^3 + 3*I*a^2 - 3*a 
- I)*x)*sqrt((a - I)*b^2/(a^5 + 5*I*a^4 - 10*a^3 - 10*I*a^2 + 5*a + I))*lo 
g(-(b^2*x - (a^3 + 3*I*a^2 - 3*a - I)*sqrt((a - I)*b^2/(a^5 + 5*I*a^4 - 10 
*a^3 - 10*I*a^2 + 5*a + I)) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*b)/b) + sq 
rt(b^2*x^2 + 2*a*b*x + a^2 + 1)*((-I*a - 5)*b*x - I*a^2 - I))/((a^2 + 2*I* 
a - 1)*b*x^2 + (a^3 + 3*I*a^2 - 3*a - I)*x)
 

Sympy [F]

\[ \int \frac {e^{3 i \arctan (a+b x)}}{x^2} \, dx =\text {Too large to display} \] Input:

integrate((1+I*(b*x+a))**3/(1+(b*x+a)**2)**(3/2)/x**2,x)
 

Output:

-I*(Integral(I/(a**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x** 
3*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**4*sqrt(a**2 + 2*a*b*x + b 
**2*x**2 + 1) + x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral( 
-3*a/(a**2*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x**3*sqrt(a** 
2 + 2*a*b*x + b**2*x**2 + 1) + b**2*x**4*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 
 1) + x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(a**3/(a**2 
*x**2*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x**3*sqrt(a**2 + 2*a*b* 
x + b**2*x**2 + 1) + b**2*x**4*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + x**2 
*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(-3*I*a**2/(a**2*x**2 
*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x**3*sqrt(a**2 + 2*a*b*x + b 
**2*x**2 + 1) + b**2*x**4*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + x**2*sqrt 
(a**2 + 2*a*b*x + b**2*x**2 + 1)), x) + Integral(-3*b*x/(a**2*x**2*sqrt(a* 
*2 + 2*a*b*x + b**2*x**2 + 1) + 2*a*b*x**3*sqrt(a**2 + 2*a*b*x + b**2*x**2 
 + 1) + b**2*x**4*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + x**2*sqrt(a**2 + 
2*a*b*x + b**2*x**2 + 1)), x) + Integral(b**3*x**3/(a**2*x**2*sqrt(a**2 + 
2*a*b*x + b**2*x**2 + 1) + 2*a*b*x**3*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) 
 + b**2*x**4*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + x**2*sqrt(a**2 + 2*a*b 
*x + b**2*x**2 + 1)), x) + Integral(-3*I*b**2*x**2/(a**2*x**2*sqrt(a**2 + 
2*a*b*x + b**2*x**2 + 1) + 2*a*b*x**3*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) 
 + b**2*x**4*sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1) + x**2*sqrt(a**2 + 2*...
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 992 vs. \(2 (116) = 232\).

Time = 0.04 (sec) , antiderivative size = 992, normalized size of antiderivative = 5.64 \[ \int \frac {e^{3 i \arctan (a+b x)}}{x^2} \, dx=\text {Too large to display} \] Input:

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2)/x^2,x, algorithm="maxima")
 

Output:

-I*a*b^4*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - 
 3*(-I*a^3 - 3*a^2 + 3*I*a + 1)*a^2*b^4*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt( 
b^2*x^2 + 2*a*b*x + a^2 + 1)*(a^2 + 1)^2) - I*a^2*b^3/((a^2*b^2 - (a^2 + 1 
)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - 3*(-I*a^3 - 3*a^2 + 3*I*a + 1) 
*a^3*b^3/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*(a^2 
 + 1)^2) - 3*(I*a^2*b + 2*a*b - I*b)*a*b^3*x/((a^2*b^2 - (a^2 + 1)*b^2)*sq 
rt(b^2*x^2 + 2*a*b*x + a^2 + 1)*(a^2 + 1)) + 2*(-I*a^3 - 3*a^2 + 3*I*a + 1 
)*b^4*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*(a^2 
+ 1)) - 3*(I*a^2*b + 2*a*b - I*b)*a^2*b^2/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt( 
b^2*x^2 + 2*a*b*x + a^2 + 1)*(a^2 + 1)) + 2*(-I*a^3 - 3*a^2 + 3*I*a + 1)*a 
*b^3/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*(a^2 + 1 
)) + 3*(I*a*b^2 + b^2)*b^2*x/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b^2*x^2 + 2*a 
*b*x + a^2 + 1)) + 3*(I*a*b^2 + b^2)*a*b/((a^2*b^2 - (a^2 + 1)*b^2)*sqrt(b 
^2*x^2 + 2*a*b*x + a^2 + 1)) + 3*(-I*a^3 - 3*a^2 + 3*I*a + 1)*a*b*arcsinh( 
2*a*b*x/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs(x)) + 2*a^2/(sqrt(-4*a^2*b 
^2 + 4*(a^2 + 1)*b^2)*abs(x)) + 2/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs( 
x)))/(a^2 + 1)^(5/2) + I*b/sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1) - 3*(-I*a^3 - 
 3*a^2 + 3*I*a + 1)*a*b/(sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)*(a^2 + 1)^2) + 
3*(I*a^2*b + 2*a*b - I*b)*arcsinh(2*a*b*x/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b 
^2)*abs(x)) + 2*a^2/(sqrt(-4*a^2*b^2 + 4*(a^2 + 1)*b^2)*abs(x)) + 2/(sq...
 

Giac [F]

\[ \int \frac {e^{3 i \arctan (a+b x)}}{x^2} \, dx=\int { \frac {{\left (i \, b x + i \, a + 1\right )}^{3}}{{\left ({\left (b x + a\right )}^{2} + 1\right )}^{\frac {3}{2}} x^{2}} \,d x } \] Input:

integrate((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2)/x^2,x, algorithm="giac")
 

Output:

undef
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{3 i \arctan (a+b x)}}{x^2} \, dx=\int \frac {{\left (1+a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}\right )}^3}{x^2\,{\left ({\left (a+b\,x\right )}^2+1\right )}^{3/2}} \,d x \] Input:

int((a*1i + b*x*1i + 1)^3/(x^2*((a + b*x)^2 + 1)^(3/2)),x)
 

Output:

int((a*1i + b*x*1i + 1)^3/(x^2*((a + b*x)^2 + 1)^(3/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 1546, normalized size of antiderivative = 8.78 \[ \int \frac {e^{3 i \arctan (a+b x)}}{x^2} \, dx =\text {Too large to display} \] Input:

int((1+I*(b*x+a))^3/(1+(b*x+a)^2)^(3/2)/x^2,x)
 

Output:

(6*sqrt(a**2 + 1)*atan((sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*i + b*i*x)/sq 
rt(a**2 + 1))*a**6*b*i*x + 12*sqrt(a**2 + 1)*atan((sqrt(a**2 + 2*a*b*x + b 
**2*x**2 + 1)*i + b*i*x)/sqrt(a**2 + 1))*a**5*b**2*i*x**2 + 18*sqrt(a**2 + 
 1)*atan((sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*i + b*i*x)/sqrt(a**2 + 1))* 
a**5*b*x + 6*sqrt(a**2 + 1)*atan((sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*i + 
 b*i*x)/sqrt(a**2 + 1))*a**4*b**3*i*x**3 + 36*sqrt(a**2 + 1)*atan((sqrt(a* 
*2 + 2*a*b*x + b**2*x**2 + 1)*i + b*i*x)/sqrt(a**2 + 1))*a**4*b**2*x**2 - 
12*sqrt(a**2 + 1)*atan((sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*i + b*i*x)/sq 
rt(a**2 + 1))*a**4*b*i*x + 18*sqrt(a**2 + 1)*atan((sqrt(a**2 + 2*a*b*x + b 
**2*x**2 + 1)*i + b*i*x)/sqrt(a**2 + 1))*a**3*b**3*x**3 - 36*sqrt(a**2 + 1 
)*atan((sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*i + b*i*x)/sqrt(a**2 + 1))*a* 
*3*b**2*i*x**2 + 12*sqrt(a**2 + 1)*atan((sqrt(a**2 + 2*a*b*x + b**2*x**2 + 
 1)*i + b*i*x)/sqrt(a**2 + 1))*a**3*b*x - 18*sqrt(a**2 + 1)*atan((sqrt(a** 
2 + 2*a*b*x + b**2*x**2 + 1)*i + b*i*x)/sqrt(a**2 + 1))*a**2*b**3*i*x**3 - 
 12*sqrt(a**2 + 1)*atan((sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*i + b*i*x)/s 
qrt(a**2 + 1))*a**2*b**2*x**2 - 18*sqrt(a**2 + 1)*atan((sqrt(a**2 + 2*a*b* 
x + b**2*x**2 + 1)*i + b*i*x)/sqrt(a**2 + 1))*a**2*b*i*x - 6*sqrt(a**2 + 1 
)*atan((sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*i + b*i*x)/sqrt(a**2 + 1))*a* 
b**3*x**3 - 6*sqrt(a**2 + 1)*atan((sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*i 
+ b*i*x)/sqrt(a**2 + 1))*a*b*x + sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)*a...