\(\int \frac {e^{-5 i \arctan (a x)} x^2}{(c+a^2 c x^2)^{27/2}} \, dx\) [399]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 65 \[ \int \frac {e^{-5 i \arctan (a x)} x^2}{\left (c+a^2 c x^2\right )^{27/2}} \, dx=\frac {(i-5 a x) \sqrt {1+a^2 x^2}}{120 a^3 c^{13} (1-i a x)^{10} (1+i a x)^{15} \sqrt {c+a^2 c x^2}} \] Output:

1/120*(I-5*a*x)*(a^2*x^2+1)^(1/2)/a^3/c^13/(1-I*a*x)^10/(1+I*a*x)^15/(a^2* 
c*x^2+c)^(1/2)
 

Mathematica [A] (verified)

Time = 0.61 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.97 \[ \int \frac {e^{-5 i \arctan (a x)} x^2}{\left (c+a^2 c x^2\right )^{27/2}} \, dx=\frac {(1+5 i a x) \sqrt {1+a^2 x^2}}{120 a^3 c^{13} (-i+a x)^{15} (i+a x)^{10} \sqrt {c+a^2 c x^2}} \] Input:

Integrate[x^2/(E^((5*I)*ArcTan[a*x])*(c + a^2*c*x^2)^(27/2)),x]
 

Output:

((1 + (5*I)*a*x)*Sqrt[1 + a^2*x^2])/(120*a^3*c^13*(-I + a*x)^15*(I + a*x)^ 
10*Sqrt[c + a^2*c*x^2])
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {5608, 5605, 91}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 e^{-5 i \arctan (a x)}}{\left (a^2 c x^2+c\right )^{27/2}} \, dx\)

\(\Big \downarrow \) 5608

\(\displaystyle \frac {\sqrt {a^2 x^2+1} \int \frac {e^{-5 i \arctan (a x)} x^2}{\left (a^2 x^2+1\right )^{27/2}}dx}{c^{13} \sqrt {a^2 c x^2+c}}\)

\(\Big \downarrow \) 5605

\(\displaystyle \frac {\sqrt {a^2 x^2+1} \int \frac {x^2}{(1-i a x)^{11} (i a x+1)^{16}}dx}{c^{13} \sqrt {a^2 c x^2+c}}\)

\(\Big \downarrow \) 91

\(\displaystyle \frac {(-5 a x+i) \sqrt {a^2 x^2+1}}{120 a^3 c^{13} (1-i a x)^{10} (1+i a x)^{15} \sqrt {a^2 c x^2+c}}\)

Input:

Int[x^2/(E^((5*I)*ArcTan[a*x])*(c + a^2*c*x^2)^(27/2)),x]
 

Output:

((I - 5*a*x)*Sqrt[1 + a^2*x^2])/(120*a^3*c^13*(1 - I*a*x)^10*(1 + I*a*x)^1 
5*Sqrt[c + a^2*c*x^2])
 

Defintions of rubi rules used

rule 91
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[b*(c + d*x)^(n + 1)*(e + f*x)^(p + 1)*((2*a*d*f*(n + p + 3 
) - b*(d*e*(n + 2) + c*f*(p + 2)) + b*d*f*(n + p + 2)*x)/(d^2*f^2*(n + p + 
2)*(n + p + 3))), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2 
, 0] && NeQ[n + p + 3, 0] && EqQ[d*f*(n + p + 2)*(a^2*d*f*(n + p + 3) - b*( 
b*c*e + a*(d*e*(n + 1) + c*f*(p + 1)))) - b*(d*e*(n + 1) + c*f*(p + 1))*(a* 
d*f*(n + p + 4) - b*(d*e*(n + 2) + c*f*(p + 2))), 0]
 

rule 5605
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_ 
Symbol] :> Simp[c^p   Int[x^m*(1 - I*a*x)^(p + I*(n/2))*(1 + I*a*x)^(p - I* 
(n/2)), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[d, a^2*c] && (Integer 
Q[p] || GtQ[c, 0])
 

rule 5608
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[c^IntPart[p]*((c + d*x^2)^FracPart[p]/(1 + a^2*x^2)^FracPart 
[p])   Int[x^m*(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, 
 m, n, p}, x] && EqQ[d, a^2*c] &&  !(IntegerQ[p] || GtQ[c, 0])
 
Maple [A] (verified)

Time = 0.36 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.77

method result size
risch \(\frac {\frac {i x}{24 a^{2}}+\frac {1}{120 a^{3}}}{c^{13} \left (a^{2} x^{2}+1\right )^{\frac {19}{2}} \sqrt {c \left (a^{2} x^{2}+1\right )}\, \left (a x -i\right )^{5}}\) \(50\)
default \(-\frac {\sqrt {c \left (a^{2} x^{2}+1\right )}\, \left (5 i a x +1\right )}{120 \sqrt {a^{2} x^{2}+1}\, c^{14} a^{3} \left (-a x +i\right )^{15} \left (a x +i\right )^{10}}\) \(57\)
gosper \(-\frac {\left (-a x +i\right ) \left (a x +i\right ) \left (-5 a x +i\right ) \left (a^{2} x^{2}+1\right )^{\frac {5}{2}}}{120 a^{3} \left (i a x +1\right )^{5} \left (a^{2} c \,x^{2}+c \right )^{\frac {27}{2}}}\) \(58\)
orering \(-\frac {x^{3} \left (-a^{22} x^{22}+5 i a^{21} x^{21}+40 i a^{19} x^{19}+50 a^{18} x^{18}+126 i a^{17} x^{17}+280 a^{16} x^{16}+160 i a^{15} x^{15}+765 a^{14} x^{14}-105 i a^{13} x^{13}+1248 a^{12} x^{12}-720 i a^{11} x^{11}+1260 a^{10} x^{10}-1260 i a^{9} x^{9}+720 a^{8} x^{8}-1248 i a^{7} x^{7}+105 x^{6} a^{6}-765 i x^{5} a^{5}-160 a^{4} x^{4}-280 i x^{3} a^{3}-126 a^{2} x^{2}-50 i a x -40\right ) \left (a^{2} x^{2}+1\right )^{\frac {7}{2}}}{120 \left (i a x +1\right )^{5} \left (a^{2} c \,x^{2}+c \right )^{\frac {27}{2}}}\) \(215\)

Input:

int(x^2/(1+I*a*x)^5*(a^2*x^2+1)^(5/2)/(a^2*c*x^2+c)^(27/2),x,method=_RETUR 
NVERBOSE)
 

Output:

1/c^13/(a^2*x^2+1)^(19/2)/(c*(a^2*x^2+1))^(1/2)*(1/24*I/a^2*x+1/120/a^3)/( 
a*x-I)^5
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 496 vs. \(2 (53) = 106\).

Time = 0.19 (sec) , antiderivative size = 496, normalized size of antiderivative = 7.63 \[ \int \frac {e^{-5 i \arctan (a x)} x^2}{\left (c+a^2 c x^2\right )^{27/2}} \, dx=\frac {{\left (-i \, a^{22} x^{25} - 5 \, a^{21} x^{24} - 40 \, a^{19} x^{22} + 50 i \, a^{18} x^{21} - 126 \, a^{17} x^{20} + 280 i \, a^{16} x^{19} - 160 \, a^{15} x^{18} + 765 i \, a^{14} x^{17} + 105 \, a^{13} x^{16} + 1248 i \, a^{12} x^{15} + 720 \, a^{11} x^{14} + 1260 i \, a^{10} x^{13} + 1260 \, a^{9} x^{12} + 720 i \, a^{8} x^{11} + 1248 \, a^{7} x^{10} + 105 i \, a^{6} x^{9} + 765 \, a^{5} x^{8} - 160 i \, a^{4} x^{7} + 280 \, a^{3} x^{6} - 126 i \, a^{2} x^{5} + 50 \, a x^{4} - 40 i \, x^{3}\right )} \sqrt {a^{2} c x^{2} + c} \sqrt {a^{2} x^{2} + 1}}{120 \, {\left (a^{27} c^{14} x^{27} - 5 i \, a^{26} c^{14} x^{26} + a^{25} c^{14} x^{25} - 45 i \, a^{24} c^{14} x^{24} - 50 \, a^{23} c^{14} x^{23} - 166 i \, a^{22} c^{14} x^{22} - 330 \, a^{21} c^{14} x^{21} - 286 i \, a^{20} c^{14} x^{20} - 1045 \, a^{19} c^{14} x^{19} - 55 i \, a^{18} c^{14} x^{18} - 2013 \, a^{17} c^{14} x^{17} + 825 i \, a^{16} c^{14} x^{16} - 2508 \, a^{15} c^{14} x^{15} + 1980 i \, a^{14} c^{14} x^{14} - 1980 \, a^{13} c^{14} x^{13} + 2508 i \, a^{12} c^{14} x^{12} - 825 \, a^{11} c^{14} x^{11} + 2013 i \, a^{10} c^{14} x^{10} + 55 \, a^{9} c^{14} x^{9} + 1045 i \, a^{8} c^{14} x^{8} + 286 \, a^{7} c^{14} x^{7} + 330 i \, a^{6} c^{14} x^{6} + 166 \, a^{5} c^{14} x^{5} + 50 i \, a^{4} c^{14} x^{4} + 45 \, a^{3} c^{14} x^{3} - i \, a^{2} c^{14} x^{2} + 5 \, a c^{14} x - i \, c^{14}\right )}} \] Input:

integrate(x^2/(1+I*a*x)^5*(a^2*x^2+1)^(5/2)/(a^2*c*x^2+c)^(27/2),x, algori 
thm="fricas")
 

Output:

1/120*(-I*a^22*x^25 - 5*a^21*x^24 - 40*a^19*x^22 + 50*I*a^18*x^21 - 126*a^ 
17*x^20 + 280*I*a^16*x^19 - 160*a^15*x^18 + 765*I*a^14*x^17 + 105*a^13*x^1 
6 + 1248*I*a^12*x^15 + 720*a^11*x^14 + 1260*I*a^10*x^13 + 1260*a^9*x^12 + 
720*I*a^8*x^11 + 1248*a^7*x^10 + 105*I*a^6*x^9 + 765*a^5*x^8 - 160*I*a^4*x 
^7 + 280*a^3*x^6 - 126*I*a^2*x^5 + 50*a*x^4 - 40*I*x^3)*sqrt(a^2*c*x^2 + c 
)*sqrt(a^2*x^2 + 1)/(a^27*c^14*x^27 - 5*I*a^26*c^14*x^26 + a^25*c^14*x^25 
- 45*I*a^24*c^14*x^24 - 50*a^23*c^14*x^23 - 166*I*a^22*c^14*x^22 - 330*a^2 
1*c^14*x^21 - 286*I*a^20*c^14*x^20 - 1045*a^19*c^14*x^19 - 55*I*a^18*c^14* 
x^18 - 2013*a^17*c^14*x^17 + 825*I*a^16*c^14*x^16 - 2508*a^15*c^14*x^15 + 
1980*I*a^14*c^14*x^14 - 1980*a^13*c^14*x^13 + 2508*I*a^12*c^14*x^12 - 825* 
a^11*c^14*x^11 + 2013*I*a^10*c^14*x^10 + 55*a^9*c^14*x^9 + 1045*I*a^8*c^14 
*x^8 + 286*a^7*c^14*x^7 + 330*I*a^6*c^14*x^6 + 166*a^5*c^14*x^5 + 50*I*a^4 
*c^14*x^4 + 45*a^3*c^14*x^3 - I*a^2*c^14*x^2 + 5*a*c^14*x - I*c^14)
                                                                                    
                                                                                    
 

Sympy [F(-1)]

Timed out. \[ \int \frac {e^{-5 i \arctan (a x)} x^2}{\left (c+a^2 c x^2\right )^{27/2}} \, dx=\text {Timed out} \] Input:

integrate(x**2/(1+I*a*x)**5*(a**2*x**2+1)**(5/2)/(a**2*c*x**2+c)**(27/2),x 
)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 274 vs. \(2 (53) = 106\).

Time = 0.12 (sec) , antiderivative size = 274, normalized size of antiderivative = 4.22 \[ \int \frac {e^{-5 i \arctan (a x)} x^2}{\left (c+a^2 c x^2\right )^{27/2}} \, dx=\frac {5 i \, a \sqrt {c} x + \sqrt {c}}{120 \, {\left (a^{28} c^{14} x^{25} - 5 i \, a^{27} c^{14} x^{24} - 40 i \, a^{25} c^{14} x^{22} - 50 \, a^{24} c^{14} x^{21} - 126 i \, a^{23} c^{14} x^{20} - 280 \, a^{22} c^{14} x^{19} - 160 i \, a^{21} c^{14} x^{18} - 765 \, a^{20} c^{14} x^{17} + 105 i \, a^{19} c^{14} x^{16} - 1248 \, a^{18} c^{14} x^{15} + 720 i \, a^{17} c^{14} x^{14} - 1260 \, a^{16} c^{14} x^{13} + 1260 i \, a^{15} c^{14} x^{12} - 720 \, a^{14} c^{14} x^{11} + 1248 i \, a^{13} c^{14} x^{10} - 105 \, a^{12} c^{14} x^{9} + 765 i \, a^{11} c^{14} x^{8} + 160 \, a^{10} c^{14} x^{7} + 280 i \, a^{9} c^{14} x^{6} + 126 \, a^{8} c^{14} x^{5} + 50 i \, a^{7} c^{14} x^{4} + 40 \, a^{6} c^{14} x^{3} + 5 \, a^{4} c^{14} x - i \, a^{3} c^{14}\right )}} \] Input:

integrate(x^2/(1+I*a*x)^5*(a^2*x^2+1)^(5/2)/(a^2*c*x^2+c)^(27/2),x, algori 
thm="maxima")
 

Output:

1/120*(5*I*a*sqrt(c)*x + sqrt(c))/(a^28*c^14*x^25 - 5*I*a^27*c^14*x^24 - 4 
0*I*a^25*c^14*x^22 - 50*a^24*c^14*x^21 - 126*I*a^23*c^14*x^20 - 280*a^22*c 
^14*x^19 - 160*I*a^21*c^14*x^18 - 765*a^20*c^14*x^17 + 105*I*a^19*c^14*x^1 
6 - 1248*a^18*c^14*x^15 + 720*I*a^17*c^14*x^14 - 1260*a^16*c^14*x^13 + 126 
0*I*a^15*c^14*x^12 - 720*a^14*c^14*x^11 + 1248*I*a^13*c^14*x^10 - 105*a^12 
*c^14*x^9 + 765*I*a^11*c^14*x^8 + 160*a^10*c^14*x^7 + 280*I*a^9*c^14*x^6 + 
 126*a^8*c^14*x^5 + 50*I*a^7*c^14*x^4 + 40*a^6*c^14*x^3 + 5*a^4*c^14*x - I 
*a^3*c^14)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {e^{-5 i \arctan (a x)} x^2}{\left (c+a^2 c x^2\right )^{27/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^2/(1+I*a*x)^5*(a^2*x^2+1)^(5/2)/(a^2*c*x^2+c)^(27/2),x, algori 
thm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Warning, need to choose a branch fo 
r the root of a polynomial with parameters. This might be wrong.The choice 
 was done
 

Mupad [B] (verification not implemented)

Time = 27.20 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.72 \[ \int \frac {e^{-5 i \arctan (a x)} x^2}{\left (c+a^2 c x^2\right )^{27/2}} \, dx=\frac {c^2\,\sqrt {a^2\,x^2+1}\,{\left (a\,x+1{}\mathrm {i}\right )}^5\,\left (1+a\,x\,5{}\mathrm {i}\right )}{120\,a^3\,{\left (c\,\left (a^2\,x^2+1\right )\right )}^{31/2}} \] Input:

int((x^2*(a^2*x^2 + 1)^(5/2))/((c + a^2*c*x^2)^(27/2)*(a*x*1i + 1)^5),x)
 

Output:

(c^2*(a^2*x^2 + 1)^(1/2)*(a*x + 1i)^5*(a*x*5i + 1))/(120*a^3*(c*(a^2*x^2 + 
 1))^(31/2))
 

Reduce [F]

\[ \int \frac {e^{-5 i \arctan (a x)} x^2}{\left (c+a^2 c x^2\right )^{27/2}} \, dx=\frac {\sqrt {c}\, \left (\int \frac {x^{2}}{a^{27} i \,x^{27}+5 a^{26} x^{26}+a^{25} i \,x^{25}+45 a^{24} x^{24}-50 a^{23} i \,x^{23}+166 a^{22} x^{22}-330 a^{21} i \,x^{21}+286 a^{20} x^{20}-1045 a^{19} i \,x^{19}+55 a^{18} x^{18}-2013 a^{17} i \,x^{17}-825 a^{16} x^{16}-2508 a^{15} i \,x^{15}-1980 a^{14} x^{14}-1980 a^{13} i \,x^{13}-2508 a^{12} x^{12}-825 a^{11} i \,x^{11}-2013 a^{10} x^{10}+55 a^{9} i \,x^{9}-1045 a^{8} x^{8}+286 a^{7} i \,x^{7}-330 a^{6} x^{6}+166 a^{5} i \,x^{5}-50 a^{4} x^{4}+45 a^{3} i \,x^{3}+a^{2} x^{2}+5 a i x +1}d x \right )}{c^{14}} \] Input:

int(x^2/(1+I*a*x)^5*(a^2*x^2+1)^(5/2)/(a^2*c*x^2+c)^(27/2),x)
 

Output:

(sqrt(c)*int(x**2/(a**27*i*x**27 + 5*a**26*x**26 + a**25*i*x**25 + 45*a**2 
4*x**24 - 50*a**23*i*x**23 + 166*a**22*x**22 - 330*a**21*i*x**21 + 286*a** 
20*x**20 - 1045*a**19*i*x**19 + 55*a**18*x**18 - 2013*a**17*i*x**17 - 825* 
a**16*x**16 - 2508*a**15*i*x**15 - 1980*a**14*x**14 - 1980*a**13*i*x**13 - 
 2508*a**12*x**12 - 825*a**11*i*x**11 - 2013*a**10*x**10 + 55*a**9*i*x**9 
- 1045*a**8*x**8 + 286*a**7*i*x**7 - 330*a**6*x**6 + 166*a**5*i*x**5 - 50* 
a**4*x**4 + 45*a**3*i*x**3 + a**2*x**2 + 5*a*i*x + 1),x))/c**14