\(\int e^{\text {arctanh}(a x)} x^m (c-a^2 c x^2)^{5/2} \, dx\) [1035]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 274 \[ \int e^{\text {arctanh}(a x)} x^m \left (c-a^2 c x^2\right )^{5/2} \, dx=\frac {c^2 x^{1+m} \sqrt {c-a^2 c x^2}}{(1+m) \sqrt {1-a^2 x^2}}+\frac {a c^2 x^{2+m} \sqrt {c-a^2 c x^2}}{(2+m) \sqrt {1-a^2 x^2}}-\frac {2 a^2 c^2 x^{3+m} \sqrt {c-a^2 c x^2}}{(3+m) \sqrt {1-a^2 x^2}}-\frac {2 a^3 c^2 x^{4+m} \sqrt {c-a^2 c x^2}}{(4+m) \sqrt {1-a^2 x^2}}+\frac {a^4 c^2 x^{5+m} \sqrt {c-a^2 c x^2}}{(5+m) \sqrt {1-a^2 x^2}}+\frac {a^5 c^2 x^{6+m} \sqrt {c-a^2 c x^2}}{(6+m) \sqrt {1-a^2 x^2}} \] Output:

c^2*x^(1+m)*(-a^2*c*x^2+c)^(1/2)/(1+m)/(-a^2*x^2+1)^(1/2)+a*c^2*x^(2+m)*(- 
a^2*c*x^2+c)^(1/2)/(2+m)/(-a^2*x^2+1)^(1/2)-2*a^2*c^2*x^(3+m)*(-a^2*c*x^2+ 
c)^(1/2)/(3+m)/(-a^2*x^2+1)^(1/2)-2*a^3*c^2*x^(4+m)*(-a^2*c*x^2+c)^(1/2)/( 
4+m)/(-a^2*x^2+1)^(1/2)+a^4*c^2*x^(5+m)*(-a^2*c*x^2+c)^(1/2)/(5+m)/(-a^2*x 
^2+1)^(1/2)+a^5*c^2*x^(6+m)*(-a^2*c*x^2+c)^(1/2)/(6+m)/(-a^2*x^2+1)^(1/2)
 

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.37 \[ \int e^{\text {arctanh}(a x)} x^m \left (c-a^2 c x^2\right )^{5/2} \, dx=\frac {c^2 x^{1+m} \sqrt {c-a^2 c x^2} \left (\frac {1}{1+m}+\frac {a x}{2+m}-\frac {2 a^2 x^2}{3+m}-\frac {2 a^3 x^3}{4+m}+\frac {a^4 x^4}{5+m}+\frac {a^5 x^5}{6+m}\right )}{\sqrt {1-a^2 x^2}} \] Input:

Integrate[E^ArcTanh[a*x]*x^m*(c - a^2*c*x^2)^(5/2),x]
 

Output:

(c^2*x^(1 + m)*Sqrt[c - a^2*c*x^2]*((1 + m)^(-1) + (a*x)/(2 + m) - (2*a^2* 
x^2)/(3 + m) - (2*a^3*x^3)/(4 + m) + (a^4*x^4)/(5 + m) + (a^5*x^5)/(6 + m) 
))/Sqrt[1 - a^2*x^2]
 

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.42, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {6703, 6700, 99, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^m e^{\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{5/2} \, dx\)

\(\Big \downarrow \) 6703

\(\displaystyle \frac {c^2 \sqrt {c-a^2 c x^2} \int e^{\text {arctanh}(a x)} x^m \left (1-a^2 x^2\right )^{5/2}dx}{\sqrt {1-a^2 x^2}}\)

\(\Big \downarrow \) 6700

\(\displaystyle \frac {c^2 \sqrt {c-a^2 c x^2} \int x^m (1-a x)^2 (a x+1)^3dx}{\sqrt {1-a^2 x^2}}\)

\(\Big \downarrow \) 99

\(\displaystyle \frac {c^2 \sqrt {c-a^2 c x^2} \int \left (x^m+a x^{m+1}-2 a^2 x^{m+2}-2 a^3 x^{m+3}+a^4 x^{m+4}+a^5 x^{m+5}\right )dx}{\sqrt {1-a^2 x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {c^2 \sqrt {c-a^2 c x^2} \left (\frac {a^5 x^{m+6}}{m+6}+\frac {a^4 x^{m+5}}{m+5}-\frac {2 a^3 x^{m+4}}{m+4}-\frac {2 a^2 x^{m+3}}{m+3}+\frac {a x^{m+2}}{m+2}+\frac {x^{m+1}}{m+1}\right )}{\sqrt {1-a^2 x^2}}\)

Input:

Int[E^ArcTanh[a*x]*x^m*(c - a^2*c*x^2)^(5/2),x]
 

Output:

(c^2*Sqrt[c - a^2*c*x^2]*(x^(1 + m)/(1 + m) + (a*x^(2 + m))/(2 + m) - (2*a 
^2*x^(3 + m))/(3 + m) - (2*a^3*x^(4 + m))/(4 + m) + (a^4*x^(5 + m))/(5 + m 
) + (a^5*x^(6 + m))/(6 + m)))/Sqrt[1 - a^2*x^2]
 

Defintions of rubi rules used

rule 99
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] && (IntegerQ[p] | 
| (GtQ[m, 0] && GeQ[n, -1]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6700
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x 
_Symbol] :> Simp[c^p   Int[x^m*(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], 
 x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || 
 GtQ[c, 0])
 

rule 6703
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_ 
Symbol] :> Simp[c^IntPart[p]*((c + d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPar 
t[p])   Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, 
d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !I 
ntegerQ[n/2]
 
Maple [A] (verified)

Time = 0.13 (sec) , antiderivative size = 376, normalized size of antiderivative = 1.37

method result size
orering \(\frac {x \left (a^{5} m^{5} x^{5}+15 a^{5} m^{4} x^{5}+85 a^{5} m^{3} x^{5}+a^{4} x^{4} m^{5}+225 a^{5} m^{2} x^{5}+16 a^{4} x^{4} m^{4}+274 a^{5} m \,x^{5}+95 a^{4} x^{4} m^{3}-2 a^{3} m^{5} x^{3}+120 a^{5} x^{5}+260 a^{4} x^{4} m^{2}-34 a^{3} m^{4} x^{3}+324 a^{4} x^{4} m -214 a^{3} m^{3} x^{3}-2 a^{2} x^{2} m^{5}+144 a^{4} x^{4}-614 a^{3} m^{2} x^{3}-36 a^{2} x^{2} m^{4}-792 a^{3} m \,x^{3}-242 a^{2} x^{2} m^{3}+a \,m^{5} x -360 a^{3} x^{3}-744 a^{2} m^{2} x^{2}+19 a \,m^{4} x -1016 a^{2} m \,x^{2}+137 a \,m^{3} x +m^{5}-480 a^{2} x^{2}+461 a x \,m^{2}+20 m^{4}+702 a m x +155 m^{3}+360 a x +580 m^{2}+1044 m +720\right ) x^{m} \left (-a^{2} c \,x^{2}+c \right )^{\frac {5}{2}}}{\left (m +6\right ) \left (5+m \right ) \left (4+m \right ) \left (3+m \right ) \left (2+m \right ) \left (1+m \right ) \left (a x +1\right )^{2} \left (a x -1\right )^{2} \sqrt {-a^{2} x^{2}+1}}\) \(376\)
gosper \(\frac {x^{1+m} \left (-a^{2} c \,x^{2}+c \right )^{\frac {5}{2}} \left (a^{5} m^{5} x^{5}+15 a^{5} m^{4} x^{5}+85 a^{5} m^{3} x^{5}+a^{4} x^{4} m^{5}+225 a^{5} m^{2} x^{5}+16 a^{4} x^{4} m^{4}+274 a^{5} m \,x^{5}+95 a^{4} x^{4} m^{3}-2 a^{3} m^{5} x^{3}+120 a^{5} x^{5}+260 a^{4} x^{4} m^{2}-34 a^{3} m^{4} x^{3}+324 a^{4} x^{4} m -214 a^{3} m^{3} x^{3}-2 a^{2} x^{2} m^{5}+144 a^{4} x^{4}-614 a^{3} m^{2} x^{3}-36 a^{2} x^{2} m^{4}-792 a^{3} m \,x^{3}-242 a^{2} x^{2} m^{3}+a \,m^{5} x -360 a^{3} x^{3}-744 a^{2} m^{2} x^{2}+19 a \,m^{4} x -1016 a^{2} m \,x^{2}+137 a \,m^{3} x +m^{5}-480 a^{2} x^{2}+461 a x \,m^{2}+20 m^{4}+702 a m x +155 m^{3}+360 a x +580 m^{2}+1044 m +720\right )}{\left (1+m \right ) \left (2+m \right ) \left (3+m \right ) \left (4+m \right ) \left (5+m \right ) \left (m +6\right ) \left (a x -1\right )^{2} \left (a x +1\right )^{2} \sqrt {-a^{2} x^{2}+1}}\) \(377\)
risch \(-\frac {\sqrt {-\frac {c \left (-a^{2} x^{2}+1\right )}{a^{2} x^{2}-1}}\, \left (a^{2} x^{2}-1\right ) c^{\frac {5}{2}} \left (a^{5} m^{5} x^{5}+15 a^{5} m^{4} x^{5}+85 a^{5} m^{3} x^{5}+a^{4} x^{4} m^{5}+225 a^{5} m^{2} x^{5}+16 a^{4} x^{4} m^{4}+274 a^{5} m \,x^{5}+95 a^{4} x^{4} m^{3}-2 a^{3} m^{5} x^{3}+120 a^{5} x^{5}+260 a^{4} x^{4} m^{2}-34 a^{3} m^{4} x^{3}+324 a^{4} x^{4} m -214 a^{3} m^{3} x^{3}-2 a^{2} x^{2} m^{5}+144 a^{4} x^{4}-614 a^{3} m^{2} x^{3}-36 a^{2} x^{2} m^{4}-792 a^{3} m \,x^{3}-242 a^{2} x^{2} m^{3}+a \,m^{5} x -360 a^{3} x^{3}-744 a^{2} m^{2} x^{2}+19 a \,m^{4} x -1016 a^{2} m \,x^{2}+137 a \,m^{3} x +m^{5}-480 a^{2} x^{2}+461 a x \,m^{2}+20 m^{4}+702 a m x +155 m^{3}+360 a x +580 m^{2}+1044 m +720\right ) x \,x^{m}}{\sqrt {-a^{2} x^{2}+1}\, \sqrt {-c \left (a^{2} x^{2}-1\right )}\, \left (m +6\right ) \left (5+m \right ) \left (4+m \right ) \left (3+m \right ) \left (2+m \right ) \left (1+m \right )}\) \(402\)

Input:

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m*(-a^2*c*x^2+c)^(5/2),x,method=_RETURNVE 
RBOSE)
 

Output:

x*(a^5*m^5*x^5+15*a^5*m^4*x^5+85*a^5*m^3*x^5+a^4*m^5*x^4+225*a^5*m^2*x^5+1 
6*a^4*m^4*x^4+274*a^5*m*x^5+95*a^4*m^3*x^4-2*a^3*m^5*x^3+120*a^5*x^5+260*a 
^4*m^2*x^4-34*a^3*m^4*x^3+324*a^4*m*x^4-214*a^3*m^3*x^3-2*a^2*m^5*x^2+144* 
a^4*x^4-614*a^3*m^2*x^3-36*a^2*m^4*x^2-792*a^3*m*x^3-242*a^2*m^3*x^2+a*m^5 
*x-360*a^3*x^3-744*a^2*m^2*x^2+19*a*m^4*x-1016*a^2*m*x^2+137*a*m^3*x+m^5-4 
80*a^2*x^2+461*a*m^2*x+20*m^4+702*a*m*x+155*m^3+360*a*x+580*m^2+1044*m+720 
)*x^m*(-a^2*c*x^2+c)^(5/2)/(m+6)/(5+m)/(4+m)/(3+m)/(2+m)/(1+m)/(a*x+1)^2/( 
a*x-1)^2/(-a^2*x^2+1)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 476, normalized size of antiderivative = 1.74 \[ \int e^{\text {arctanh}(a x)} x^m \left (c-a^2 c x^2\right )^{5/2} \, dx=\frac {{\left ({\left (a^{5} c^{2} m^{5} + 15 \, a^{5} c^{2} m^{4} + 85 \, a^{5} c^{2} m^{3} + 225 \, a^{5} c^{2} m^{2} + 274 \, a^{5} c^{2} m + 120 \, a^{5} c^{2}\right )} x^{6} + {\left (a^{4} c^{2} m^{5} + 16 \, a^{4} c^{2} m^{4} + 95 \, a^{4} c^{2} m^{3} + 260 \, a^{4} c^{2} m^{2} + 324 \, a^{4} c^{2} m + 144 \, a^{4} c^{2}\right )} x^{5} - 2 \, {\left (a^{3} c^{2} m^{5} + 17 \, a^{3} c^{2} m^{4} + 107 \, a^{3} c^{2} m^{3} + 307 \, a^{3} c^{2} m^{2} + 396 \, a^{3} c^{2} m + 180 \, a^{3} c^{2}\right )} x^{4} - 2 \, {\left (a^{2} c^{2} m^{5} + 18 \, a^{2} c^{2} m^{4} + 121 \, a^{2} c^{2} m^{3} + 372 \, a^{2} c^{2} m^{2} + 508 \, a^{2} c^{2} m + 240 \, a^{2} c^{2}\right )} x^{3} + {\left (a c^{2} m^{5} + 19 \, a c^{2} m^{4} + 137 \, a c^{2} m^{3} + 461 \, a c^{2} m^{2} + 702 \, a c^{2} m + 360 \, a c^{2}\right )} x^{2} + {\left (c^{2} m^{5} + 20 \, c^{2} m^{4} + 155 \, c^{2} m^{3} + 580 \, c^{2} m^{2} + 1044 \, c^{2} m + 720 \, c^{2}\right )} x\right )} \sqrt {-a^{2} c x^{2} + c} \sqrt {-a^{2} x^{2} + 1} x^{m}}{m^{6} + 21 \, m^{5} + 175 \, m^{4} + 735 \, m^{3} - {\left (a^{2} m^{6} + 21 \, a^{2} m^{5} + 175 \, a^{2} m^{4} + 735 \, a^{2} m^{3} + 1624 \, a^{2} m^{2} + 1764 \, a^{2} m + 720 \, a^{2}\right )} x^{2} + 1624 \, m^{2} + 1764 \, m + 720} \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m*(-a^2*c*x^2+c)^(5/2),x, algorithm 
="fricas")
 

Output:

((a^5*c^2*m^5 + 15*a^5*c^2*m^4 + 85*a^5*c^2*m^3 + 225*a^5*c^2*m^2 + 274*a^ 
5*c^2*m + 120*a^5*c^2)*x^6 + (a^4*c^2*m^5 + 16*a^4*c^2*m^4 + 95*a^4*c^2*m^ 
3 + 260*a^4*c^2*m^2 + 324*a^4*c^2*m + 144*a^4*c^2)*x^5 - 2*(a^3*c^2*m^5 + 
17*a^3*c^2*m^4 + 107*a^3*c^2*m^3 + 307*a^3*c^2*m^2 + 396*a^3*c^2*m + 180*a 
^3*c^2)*x^4 - 2*(a^2*c^2*m^5 + 18*a^2*c^2*m^4 + 121*a^2*c^2*m^3 + 372*a^2* 
c^2*m^2 + 508*a^2*c^2*m + 240*a^2*c^2)*x^3 + (a*c^2*m^5 + 19*a*c^2*m^4 + 1 
37*a*c^2*m^3 + 461*a*c^2*m^2 + 702*a*c^2*m + 360*a*c^2)*x^2 + (c^2*m^5 + 2 
0*c^2*m^4 + 155*c^2*m^3 + 580*c^2*m^2 + 1044*c^2*m + 720*c^2)*x)*sqrt(-a^2 
*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*x^m/(m^6 + 21*m^5 + 175*m^4 + 735*m^3 - (a^ 
2*m^6 + 21*a^2*m^5 + 175*a^2*m^4 + 735*a^2*m^3 + 1624*a^2*m^2 + 1764*a^2*m 
 + 720*a^2)*x^2 + 1624*m^2 + 1764*m + 720)
 

Sympy [F(-1)]

Timed out. \[ \int e^{\text {arctanh}(a x)} x^m \left (c-a^2 c x^2\right )^{5/2} \, dx=\text {Timed out} \] Input:

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x**m*(-a**2*c*x**2+c)**(5/2),x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.53 \[ \int e^{\text {arctanh}(a x)} x^m \left (c-a^2 c x^2\right )^{5/2} \, dx=\frac {{\left ({\left (m^{2} + 6 \, m + 8\right )} a^{4} c^{\frac {5}{2}} x^{6} - 2 \, {\left (m^{2} + 8 \, m + 12\right )} a^{2} c^{\frac {5}{2}} x^{4} + {\left (m^{2} + 10 \, m + 24\right )} c^{\frac {5}{2}} x^{2}\right )} a x^{m}}{m^{3} + 12 \, m^{2} + 44 \, m + 48} + \frac {{\left ({\left (m^{2} + 4 \, m + 3\right )} a^{4} c^{\frac {5}{2}} x^{5} - 2 \, {\left (m^{2} + 6 \, m + 5\right )} a^{2} c^{\frac {5}{2}} x^{3} + {\left (m^{2} + 8 \, m + 15\right )} c^{\frac {5}{2}} x\right )} x^{m}}{m^{3} + 9 \, m^{2} + 23 \, m + 15} \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m*(-a^2*c*x^2+c)^(5/2),x, algorithm 
="maxima")
 

Output:

((m^2 + 6*m + 8)*a^4*c^(5/2)*x^6 - 2*(m^2 + 8*m + 12)*a^2*c^(5/2)*x^4 + (m 
^2 + 10*m + 24)*c^(5/2)*x^2)*a*x^m/(m^3 + 12*m^2 + 44*m + 48) + ((m^2 + 4* 
m + 3)*a^4*c^(5/2)*x^5 - 2*(m^2 + 6*m + 5)*a^2*c^(5/2)*x^3 + (m^2 + 8*m + 
15)*c^(5/2)*x)*x^m/(m^3 + 9*m^2 + 23*m + 15)
 

Giac [F]

\[ \int e^{\text {arctanh}(a x)} x^m \left (c-a^2 c x^2\right )^{5/2} \, dx=\int { \frac {{\left (-a^{2} c x^{2} + c\right )}^{\frac {5}{2}} {\left (a x + 1\right )} x^{m}}{\sqrt {-a^{2} x^{2} + 1}} \,d x } \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m*(-a^2*c*x^2+c)^(5/2),x, algorithm 
="giac")
 

Output:

integrate((-a^2*c*x^2 + c)^(5/2)*(a*x + 1)*x^m/sqrt(-a^2*x^2 + 1), x)
 

Mupad [B] (verification not implemented)

Time = 24.71 (sec) , antiderivative size = 468, normalized size of antiderivative = 1.71 \[ \int e^{\text {arctanh}(a x)} x^m \left (c-a^2 c x^2\right )^{5/2} \, dx=\frac {x^m\,\left (\frac {c^2\,x\,\sqrt {c-a^2\,c\,x^2}\,\left (m^5+20\,m^4+155\,m^3+580\,m^2+1044\,m+720\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}+\frac {a\,c^2\,x^2\,\sqrt {c-a^2\,c\,x^2}\,\left (m^5+19\,m^4+137\,m^3+461\,m^2+702\,m+360\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}+\frac {a^5\,c^2\,x^6\,\sqrt {c-a^2\,c\,x^2}\,\left (m^5+15\,m^4+85\,m^3+225\,m^2+274\,m+120\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}+\frac {a^4\,c^2\,x^5\,\sqrt {c-a^2\,c\,x^2}\,\left (m^5+16\,m^4+95\,m^3+260\,m^2+324\,m+144\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}-\frac {2\,a^3\,c^2\,x^4\,\sqrt {c-a^2\,c\,x^2}\,\left (m^5+17\,m^4+107\,m^3+307\,m^2+396\,m+180\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}-\frac {2\,a^2\,c^2\,x^3\,\sqrt {c-a^2\,c\,x^2}\,\left (m^5+18\,m^4+121\,m^3+372\,m^2+508\,m+240\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}\right )}{\sqrt {1-a^2\,x^2}} \] Input:

int((x^m*(c - a^2*c*x^2)^(5/2)*(a*x + 1))/(1 - a^2*x^2)^(1/2),x)
 

Output:

(x^m*((c^2*x*(c - a^2*c*x^2)^(1/2)*(1044*m + 580*m^2 + 155*m^3 + 20*m^4 + 
m^5 + 720))/(1764*m + 1624*m^2 + 735*m^3 + 175*m^4 + 21*m^5 + m^6 + 720) + 
 (a*c^2*x^2*(c - a^2*c*x^2)^(1/2)*(702*m + 461*m^2 + 137*m^3 + 19*m^4 + m^ 
5 + 360))/(1764*m + 1624*m^2 + 735*m^3 + 175*m^4 + 21*m^5 + m^6 + 720) + ( 
a^5*c^2*x^6*(c - a^2*c*x^2)^(1/2)*(274*m + 225*m^2 + 85*m^3 + 15*m^4 + m^5 
 + 120))/(1764*m + 1624*m^2 + 735*m^3 + 175*m^4 + 21*m^5 + m^6 + 720) + (a 
^4*c^2*x^5*(c - a^2*c*x^2)^(1/2)*(324*m + 260*m^2 + 95*m^3 + 16*m^4 + m^5 
+ 144))/(1764*m + 1624*m^2 + 735*m^3 + 175*m^4 + 21*m^5 + m^6 + 720) - (2* 
a^3*c^2*x^4*(c - a^2*c*x^2)^(1/2)*(396*m + 307*m^2 + 107*m^3 + 17*m^4 + m^ 
5 + 180))/(1764*m + 1624*m^2 + 735*m^3 + 175*m^4 + 21*m^5 + m^6 + 720) - ( 
2*a^2*c^2*x^3*(c - a^2*c*x^2)^(1/2)*(508*m + 372*m^2 + 121*m^3 + 18*m^4 + 
m^5 + 240))/(1764*m + 1624*m^2 + 735*m^3 + 175*m^4 + 21*m^5 + m^6 + 720))) 
/(1 - a^2*x^2)^(1/2)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.24 \[ \int e^{\text {arctanh}(a x)} x^m \left (c-a^2 c x^2\right )^{5/2} \, dx=\frac {x^{m} \sqrt {c}\, c^{2} x \left (a^{5} m^{5} x^{5}+15 a^{5} m^{4} x^{5}+85 a^{5} m^{3} x^{5}+a^{4} m^{5} x^{4}+225 a^{5} m^{2} x^{5}+16 a^{4} m^{4} x^{4}+274 a^{5} m \,x^{5}+95 a^{4} m^{3} x^{4}-2 a^{3} m^{5} x^{3}+120 a^{5} x^{5}+260 a^{4} m^{2} x^{4}-34 a^{3} m^{4} x^{3}+324 a^{4} m \,x^{4}-214 a^{3} m^{3} x^{3}-2 a^{2} m^{5} x^{2}+144 a^{4} x^{4}-614 a^{3} m^{2} x^{3}-36 a^{2} m^{4} x^{2}-792 a^{3} m \,x^{3}-242 a^{2} m^{3} x^{2}+a \,m^{5} x -360 a^{3} x^{3}-744 a^{2} m^{2} x^{2}+19 a \,m^{4} x -1016 a^{2} m \,x^{2}+137 a \,m^{3} x +m^{5}-480 a^{2} x^{2}+461 a \,m^{2} x +20 m^{4}+702 a m x +155 m^{3}+360 a x +580 m^{2}+1044 m +720\right )}{m^{6}+21 m^{5}+175 m^{4}+735 m^{3}+1624 m^{2}+1764 m +720} \] Input:

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m*(-a^2*c*x^2+c)^(5/2),x)
 

Output:

(x**m*sqrt(c)*c**2*x*(a**5*m**5*x**5 + 15*a**5*m**4*x**5 + 85*a**5*m**3*x* 
*5 + 225*a**5*m**2*x**5 + 274*a**5*m*x**5 + 120*a**5*x**5 + a**4*m**5*x**4 
 + 16*a**4*m**4*x**4 + 95*a**4*m**3*x**4 + 260*a**4*m**2*x**4 + 324*a**4*m 
*x**4 + 144*a**4*x**4 - 2*a**3*m**5*x**3 - 34*a**3*m**4*x**3 - 214*a**3*m* 
*3*x**3 - 614*a**3*m**2*x**3 - 792*a**3*m*x**3 - 360*a**3*x**3 - 2*a**2*m* 
*5*x**2 - 36*a**2*m**4*x**2 - 242*a**2*m**3*x**2 - 744*a**2*m**2*x**2 - 10 
16*a**2*m*x**2 - 480*a**2*x**2 + a*m**5*x + 19*a*m**4*x + 137*a*m**3*x + 4 
61*a*m**2*x + 702*a*m*x + 360*a*x + m**5 + 20*m**4 + 155*m**3 + 580*m**2 + 
 1044*m + 720))/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m 
 + 720)