\(\int \frac {e^{-\text {arctanh}(a x)} (c-a^2 c x^2)^p}{x} \, dx\) [1263]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 111 \[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x} \, dx=-a x \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2}-p,\frac {3}{2},a^2 x^2\right )-\frac {\sqrt {1-a^2 x^2} \left (c-a^2 c x^2\right )^p \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2}+p,\frac {3}{2}+p,1-a^2 x^2\right )}{1+2 p} \] Output:

-a*x*(-a^2*c*x^2+c)^p*hypergeom([1/2, 1/2-p],[3/2],a^2*x^2)/((-a^2*x^2+1)^ 
p)-(-a^2*x^2+1)^(1/2)*(-a^2*c*x^2+c)^p*hypergeom([1, 1/2+p],[3/2+p],-a^2*x 
^2+1)/(1+2*p)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.93 \[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x} \, dx=\left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \left (-a x \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2}-p,\frac {3}{2},a^2 x^2\right )-\frac {\left (1-a^2 x^2\right )^{\frac {1}{2}+p} \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2}+p,\frac {3}{2}+p,1-a^2 x^2\right )}{2 \left (\frac {1}{2}+p\right )}\right ) \] Input:

Integrate[(c - a^2*c*x^2)^p/(E^ArcTanh[a*x]*x),x]
 

Output:

((c - a^2*c*x^2)^p*(-(a*x*Hypergeometric2F1[1/2, 1/2 - p, 3/2, a^2*x^2]) - 
 ((1 - a^2*x^2)^(1/2 + p)*Hypergeometric2F1[1, 1/2 + p, 3/2 + p, 1 - a^2*x 
^2])/(2*(1/2 + p))))/(1 - a^2*x^2)^p
 

Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.91, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {6703, 6699, 542, 237, 243, 75}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x} \, dx\)

\(\Big \downarrow \) 6703

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \int \frac {e^{-\text {arctanh}(a x)} \left (1-a^2 x^2\right )^p}{x}dx\)

\(\Big \downarrow \) 6699

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \int \frac {(1-a x) \left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{x}dx\)

\(\Big \downarrow \) 542

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \left (\int \frac {\left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{x}dx-a \int \left (1-a^2 x^2\right )^{p-\frac {1}{2}}dx\right )\)

\(\Big \downarrow \) 237

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \left (\int \frac {\left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{x}dx-a x \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2}-p,\frac {3}{2},a^2 x^2\right )\right )\)

\(\Big \downarrow \) 243

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \left (\frac {1}{2} \int \frac {\left (1-a^2 x^2\right )^{p-\frac {1}{2}}}{x^2}dx^2-a x \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2}-p,\frac {3}{2},a^2 x^2\right )\right )\)

\(\Big \downarrow \) 75

\(\displaystyle \left (1-a^2 x^2\right )^{-p} \left (c-a^2 c x^2\right )^p \left (-\frac {\left (1-a^2 x^2\right )^{p+\frac {1}{2}} \operatorname {Hypergeometric2F1}\left (1,p+\frac {1}{2},p+\frac {3}{2},1-a^2 x^2\right )}{2 p+1}-a x \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2}-p,\frac {3}{2},a^2 x^2\right )\right )\)

Input:

Int[(c - a^2*c*x^2)^p/(E^ArcTanh[a*x]*x),x]
 

Output:

((c - a^2*c*x^2)^p*(-(a*x*Hypergeometric2F1[1/2, 1/2 - p, 3/2, a^2*x^2]) - 
 ((1 - a^2*x^2)^(1/2 + p)*Hypergeometric2F1[1, 1/2 + p, 3/2 + p, 1 - a^2*x 
^2])/(1 + 2*p)))/(1 - a^2*x^2)^p
 

Defintions of rubi rules used

rule 75
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x 
)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))*Hypergeometric2F1[-m, n + 1, n + 2, 1 + 
 d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (IntegerQ[m] 
 || GtQ[-d/(b*c), 0])
 

rule 237
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[- 
p, 1/2, 1/2 + 1, (-b)*(x^2/a)], x] /; FreeQ[{a, b, p}, x] &&  !IntegerQ[2*p 
] && GtQ[a, 0]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 542
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 Simp[c   Int[x^m*(a + b*x^2)^p, x], x] + Simp[d   Int[x^(m + 1)*(a + b*x^2 
)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && IntegerQ[m] &&  !IntegerQ[2*p]
 

rule 6699
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_ 
Symbol] :> Simp[c^p   Int[x^m*((1 - a^2*x^2)^(p + n/2)/(1 - a*x)^n), x], x] 
 /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c 
, 0]) && ILtQ[(n - 1)/2, 0] &&  !IntegerQ[p - n/2]
 

rule 6703
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_ 
Symbol] :> Simp[c^IntPart[p]*((c + d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPar 
t[p])   Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, 
d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !I 
ntegerQ[n/2]
 
Maple [F]

\[\int \frac {\left (-a^{2} c \,x^{2}+c \right )^{p} \sqrt {-a^{2} x^{2}+1}}{\left (a x +1\right ) x}d x\]

Input:

int((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x,x)
 

Output:

int((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x,x)
 

Fricas [F]

\[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x} \, dx=\int { \frac {\sqrt {-a^{2} x^{2} + 1} {\left (-a^{2} c x^{2} + c\right )}^{p}}{{\left (a x + 1\right )} x} \,d x } \] Input:

integrate((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x,x, algorithm="fric 
as")
 

Output:

integral(sqrt(-a^2*x^2 + 1)*(-a^2*c*x^2 + c)^p/(a*x^2 + x), x)
 

Sympy [F]

\[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x} \, dx=\int \frac {\sqrt {- \left (a x - 1\right ) \left (a x + 1\right )} \left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{p}}{x \left (a x + 1\right )}\, dx \] Input:

integrate((-a**2*c*x**2+c)**p/(a*x+1)*(-a**2*x**2+1)**(1/2)/x,x)
 

Output:

Integral(sqrt(-(a*x - 1)*(a*x + 1))*(-c*(a*x - 1)*(a*x + 1))**p/(x*(a*x + 
1)), x)
 

Maxima [F]

\[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x} \, dx=\int { \frac {\sqrt {-a^{2} x^{2} + 1} {\left (-a^{2} c x^{2} + c\right )}^{p}}{{\left (a x + 1\right )} x} \,d x } \] Input:

integrate((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x,x, algorithm="maxi 
ma")
 

Output:

integrate(sqrt(-a^2*x^2 + 1)*(-a^2*c*x^2 + c)^p/((a*x + 1)*x), x)
 

Giac [F]

\[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x} \, dx=\int { \frac {\sqrt {-a^{2} x^{2} + 1} {\left (-a^{2} c x^{2} + c\right )}^{p}}{{\left (a x + 1\right )} x} \,d x } \] Input:

integrate((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x,x, algorithm="giac 
")
 

Output:

integrate(sqrt(-a^2*x^2 + 1)*(-a^2*c*x^2 + c)^p/((a*x + 1)*x), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x} \, dx=\int \frac {{\left (c-a^2\,c\,x^2\right )}^p\,\sqrt {1-a^2\,x^2}}{x\,\left (a\,x+1\right )} \,d x \] Input:

int(((c - a^2*c*x^2)^p*(1 - a^2*x^2)^(1/2))/(x*(a*x + 1)),x)
 

Output:

int(((c - a^2*c*x^2)^p*(1 - a^2*x^2)^(1/2))/(x*(a*x + 1)), x)
 

Reduce [F]

\[ \int \frac {e^{-\text {arctanh}(a x)} \left (c-a^2 c x^2\right )^p}{x} \, dx=\int \frac {\left (-a^{2} c \,x^{2}+c \right )^{p} \sqrt {-a^{2} x^{2}+1}}{a \,x^{2}+x}d x \] Input:

int((-a^2*c*x^2+c)^p/(a*x+1)*(-a^2*x^2+1)^(1/2)/x,x)
                                                                                    
                                                                                    
 

Output:

int((( - a**2*c*x**2 + c)**p*sqrt( - a**2*x**2 + 1))/(a*x**2 + x),x)