\(\int \frac {e^{\frac {\text {arctanh}(x)}{3}}}{x^2} \, dx\) [133]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 154 \[ \int \frac {e^{\frac {\text {arctanh}(x)}{3}}}{x^2} \, dx=-\frac {(1-x)^{5/6} \sqrt [6]{1+x}}{x}+\frac {\arctan \left (\frac {1-\frac {2 \sqrt [6]{1+x}}{\sqrt [6]{1-x}}}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {\arctan \left (\frac {1+\frac {2 \sqrt [6]{1+x}}{\sqrt [6]{1-x}}}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {2}{3} \text {arctanh}\left (\frac {\sqrt [6]{1+x}}{\sqrt [6]{1-x}}\right )-\frac {1}{3} \text {arctanh}\left (\frac {\sqrt [6]{1+x}}{\sqrt [6]{1-x} \left (1+\frac {\sqrt [3]{1+x}}{\sqrt [3]{1-x}}\right )}\right ) \] Output:

-(1-x)^(5/6)*(1+x)^(1/6)/x+1/3*3^(1/2)*arctan(1/3*(1-2*(1+x)^(1/6)/(1-x)^( 
1/6))*3^(1/2))-1/3*3^(1/2)*arctan(1/3*(1+2*(1+x)^(1/6)/(1-x)^(1/6))*3^(1/2 
))-2/3*arctanh((1+x)^(1/6)/(1-x)^(1/6))-1/3*arctanh((1+x)^(1/6)/(1-x)^(1/6 
)/(1+(1+x)^(1/3)/(1-x)^(1/3)))
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.32 \[ \int \frac {e^{\frac {\text {arctanh}(x)}{3}}}{x^2} \, dx=-\frac {(1-x)^{5/6} \left (5+5 x+2 x \operatorname {Hypergeometric2F1}\left (\frac {5}{6},1,\frac {11}{6},\frac {1-x}{1+x}\right )\right )}{5 x (1+x)^{5/6}} \] Input:

Integrate[E^(ArcTanh[x]/3)/x^2,x]
 

Output:

-1/5*((1 - x)^(5/6)*(5 + 5*x + 2*x*Hypergeometric2F1[5/6, 1, 11/6, (1 - x) 
/(1 + x)]))/(x*(1 + x)^(5/6))
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.35, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.917, Rules used = {6676, 105, 104, 754, 27, 219, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\frac {\text {arctanh}(x)}{3}}}{x^2} \, dx\)

\(\Big \downarrow \) 6676

\(\displaystyle \int \frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x} x^2}dx\)

\(\Big \downarrow \) 105

\(\displaystyle \frac {1}{3} \int \frac {1}{\sqrt [6]{1-x} x (x+1)^{5/6}}dx-\frac {(1-x)^{5/6} \sqrt [6]{x+1}}{x}\)

\(\Big \downarrow \) 104

\(\displaystyle 2 \int \frac {1}{\frac {x+1}{1-x}-1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\frac {(1-x)^{5/6} \sqrt [6]{x+1}}{x}\)

\(\Big \downarrow \) 754

\(\displaystyle 2 \left (-\frac {1}{3} \int \frac {1}{1-\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\frac {1}{3} \int \frac {2-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}}{2 \left (\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1\right )}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\frac {1}{3} \int \frac {\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+2}{2 \left (\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}+\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1\right )}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )-\frac {(1-x)^{5/6} \sqrt [6]{x+1}}{x}\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (-\frac {1}{3} \int \frac {1}{1-\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\frac {1}{6} \int \frac {2-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\frac {1}{6} \int \frac {\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+2}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}+\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )-\frac {(1-x)^{5/6} \sqrt [6]{x+1}}{x}\)

\(\Big \downarrow \) 219

\(\displaystyle 2 \left (-\frac {1}{6} \int \frac {2-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\frac {1}{6} \int \frac {\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+2}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}+\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\frac {1}{3} \text {arctanh}\left (\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )\right )-\frac {(1-x)^{5/6} \sqrt [6]{x+1}}{x}\)

\(\Big \downarrow \) 1142

\(\displaystyle 2 \left (\frac {1}{6} \left (\frac {1}{2} \int -\frac {1-\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\frac {3}{2} \int \frac {1}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )+\frac {1}{6} \left (-\frac {3}{2} \int \frac {1}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}+\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\frac {1}{2} \int \frac {\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}+\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )-\frac {1}{3} \text {arctanh}\left (\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )\right )-\frac {(1-x)^{5/6} \sqrt [6]{x+1}}{x}\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \left (\frac {1}{6} \left (-\frac {3}{2} \int \frac {1}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\frac {1}{2} \int \frac {1-\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )+\frac {1}{6} \left (-\frac {3}{2} \int \frac {1}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}+\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\frac {1}{2} \int \frac {\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}+\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )-\frac {1}{3} \text {arctanh}\left (\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )\right )-\frac {(1-x)^{5/6} \sqrt [6]{x+1}}{x}\)

\(\Big \downarrow \) 1083

\(\displaystyle 2 \left (\frac {1}{6} \left (3 \int \frac {1}{-\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-3}d\left (\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}-1\right )-\frac {1}{2} \int \frac {1-\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )+\frac {1}{6} \left (3 \int \frac {1}{-\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-3}d\left (\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1\right )-\frac {1}{2} \int \frac {\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}+\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )-\frac {1}{3} \text {arctanh}\left (\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )\right )-\frac {(1-x)^{5/6} \sqrt [6]{x+1}}{x}\)

\(\Big \downarrow \) 217

\(\displaystyle 2 \left (\frac {1}{6} \left (-\frac {1}{2} \int \frac {1-\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\sqrt {3} \arctan \left (\frac {\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}-1}{\sqrt {3}}\right )\right )+\frac {1}{6} \left (-\frac {1}{2} \int \frac {\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}{\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}+\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}d\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}-\sqrt {3} \arctan \left (\frac {\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}{\sqrt {3}}\right )\right )-\frac {1}{3} \text {arctanh}\left (\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )\right )-\frac {(1-x)^{5/6} \sqrt [6]{x+1}}{x}\)

\(\Big \downarrow \) 1103

\(\displaystyle 2 \left (\frac {1}{6} \left (\frac {1}{2} \log \left (\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}-\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1\right )-\sqrt {3} \arctan \left (\frac {\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}-1}{\sqrt {3}}\right )\right )+\frac {1}{6} \left (-\sqrt {3} \arctan \left (\frac {\frac {2 \sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1}{\sqrt {3}}\right )-\frac {1}{2} \log \left (\frac {\sqrt [3]{x+1}}{\sqrt [3]{1-x}}+\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}+1\right )\right )-\frac {1}{3} \text {arctanh}\left (\frac {\sqrt [6]{x+1}}{\sqrt [6]{1-x}}\right )\right )-\frac {(1-x)^{5/6} \sqrt [6]{x+1}}{x}\)

Input:

Int[E^(ArcTanh[x]/3)/x^2,x]
 

Output:

-(((1 - x)^(5/6)*(1 + x)^(1/6))/x) + 2*(-1/3*ArcTanh[(1 + x)^(1/6)/(1 - x) 
^(1/6)] + (-(Sqrt[3]*ArcTan[(-1 + (2*(1 + x)^(1/6))/(1 - x)^(1/6))/Sqrt[3] 
]) + Log[1 - (1 + x)^(1/6)/(1 - x)^(1/6) + (1 + x)^(1/3)/(1 - x)^(1/3)]/2) 
/6 + (-(Sqrt[3]*ArcTan[(1 + (2*(1 + x)^(1/6))/(1 - x)^(1/6))/Sqrt[3]]) - L 
og[1 + (1 + x)^(1/6)/(1 - x)^(1/6) + (1 + x)^(1/3)/(1 - x)^(1/3)]/2)/6)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 105
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[n*((d*e - c*f)/((m + 1)*(b*e - a*f)))   Int[(a 
+ b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, 
e, f, m, p}, x] && EqQ[m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] 
 ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 754
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[-a 
/b, n]], s = Denominator[Rt[-a/b, n]], k, u}, Simp[u = Int[(r - s*Cos[(2*k* 
Pi)/n]*x)/(r^2 - 2*r*s*Cos[(2*k*Pi)/n]*x + s^2*x^2), x] + Int[(r + s*Cos[(2 
*k*Pi)/n]*x)/(r^2 + 2*r*s*Cos[(2*k*Pi)/n]*x + s^2*x^2), x]; 2*(r^2/(a*n)) 
 Int[1/(r^2 - s^2*x^2), x] + 2*(r/(a*n))   Sum[u, {k, 1, (n - 2)/4}], x]] / 
; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && NegQ[a/b]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 6676
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*((c_.)*(x_))^(m_.), x_Symbol] :> Int[(c*x) 
^m*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, m, n}, x] &&  !Int 
egerQ[(n - 1)/2]
 
Maple [F]

\[\int \frac {{\left (\frac {1+x}{\sqrt {-x^{2}+1}}\right )}^{\frac {1}{3}}}{x^{2}}d x\]

Input:

int(((1+x)/(-x^2+1)^(1/2))^(1/3)/x^2,x)
 

Output:

int(((1+x)/(-x^2+1)^(1/2))^(1/3)/x^2,x)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.52 \[ \int \frac {e^{\frac {\text {arctanh}(x)}{3}}}{x^2} \, dx=-\frac {2 \, \sqrt {3} x \arctan \left (\frac {2}{3} \, \sqrt {3} \left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {1}{3}} + \frac {1}{3} \, \sqrt {3}\right ) + 2 \, \sqrt {3} x \arctan \left (\frac {2}{3} \, \sqrt {3} \left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {1}{3}} - \frac {1}{3} \, \sqrt {3}\right ) + x \log \left (\left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {2}{3}} + \left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {1}{3}} + 1\right ) - x \log \left (\left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {2}{3}} - \left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {1}{3}} + 1\right ) + 2 \, x \log \left (\left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {1}{3}} + 1\right ) - 2 \, x \log \left (\left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {1}{3}} - 1\right ) - 6 \, {\left (x - 1\right )} \left (-\frac {\sqrt {-x^{2} + 1}}{x - 1}\right )^{\frac {1}{3}}}{6 \, x} \] Input:

integrate(((1+x)/(-x^2+1)^(1/2))^(1/3)/x^2,x, algorithm="fricas")
 

Output:

-1/6*(2*sqrt(3)*x*arctan(2/3*sqrt(3)*(-sqrt(-x^2 + 1)/(x - 1))^(1/3) + 1/3 
*sqrt(3)) + 2*sqrt(3)*x*arctan(2/3*sqrt(3)*(-sqrt(-x^2 + 1)/(x - 1))^(1/3) 
 - 1/3*sqrt(3)) + x*log((-sqrt(-x^2 + 1)/(x - 1))^(2/3) + (-sqrt(-x^2 + 1) 
/(x - 1))^(1/3) + 1) - x*log((-sqrt(-x^2 + 1)/(x - 1))^(2/3) - (-sqrt(-x^2 
 + 1)/(x - 1))^(1/3) + 1) + 2*x*log((-sqrt(-x^2 + 1)/(x - 1))^(1/3) + 1) - 
 2*x*log((-sqrt(-x^2 + 1)/(x - 1))^(1/3) - 1) - 6*(x - 1)*(-sqrt(-x^2 + 1) 
/(x - 1))^(1/3))/x
 

Sympy [F]

\[ \int \frac {e^{\frac {\text {arctanh}(x)}{3}}}{x^2} \, dx=\int \frac {\sqrt [3]{\frac {x + 1}{\sqrt {1 - x^{2}}}}}{x^{2}}\, dx \] Input:

integrate(((1+x)/(-x**2+1)**(1/2))**(1/3)/x**2,x)
 

Output:

Integral(((x + 1)/sqrt(1 - x**2))**(1/3)/x**2, x)
 

Maxima [F]

\[ \int \frac {e^{\frac {\text {arctanh}(x)}{3}}}{x^2} \, dx=\int { \frac {\left (\frac {x + 1}{\sqrt {-x^{2} + 1}}\right )^{\frac {1}{3}}}{x^{2}} \,d x } \] Input:

integrate(((1+x)/(-x^2+1)^(1/2))^(1/3)/x^2,x, algorithm="maxima")
 

Output:

integrate(((x + 1)/sqrt(-x^2 + 1))^(1/3)/x^2, x)
 

Giac [F]

\[ \int \frac {e^{\frac {\text {arctanh}(x)}{3}}}{x^2} \, dx=\int { \frac {\left (\frac {x + 1}{\sqrt {-x^{2} + 1}}\right )^{\frac {1}{3}}}{x^{2}} \,d x } \] Input:

integrate(((1+x)/(-x^2+1)^(1/2))^(1/3)/x^2,x, algorithm="giac")
 

Output:

integrate(((x + 1)/sqrt(-x^2 + 1))^(1/3)/x^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{\frac {\text {arctanh}(x)}{3}}}{x^2} \, dx=\int \frac {{\left (\frac {x+1}{\sqrt {1-x^2}}\right )}^{1/3}}{x^2} \,d x \] Input:

int(((x + 1)/(1 - x^2)^(1/2))^(1/3)/x^2,x)
 

Output:

int(((x + 1)/(1 - x^2)^(1/2))^(1/3)/x^2, x)
 

Reduce [F]

\[ \int \frac {e^{\frac {\text {arctanh}(x)}{3}}}{x^2} \, dx=\int \frac {\left (x +1\right )^{\frac {1}{3}}}{\left (-x^{2}+1\right )^{\frac {1}{6}} x^{2}}d x \] Input:

int(((1+x)/(-x^2+1)^(1/2))^(1/3)/x^2,x)
 

Output:

int((x + 1)**(1/3)/(( - x**2 + 1)**(1/6)*x**2),x)