\(\int \frac {e^{3 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^5} \, dx\) [429]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 236 \[ \int \frac {e^{3 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^5} \, dx=-\frac {c \sqrt {1-a^2 x^2}}{4 x^4 \sqrt {c-a c x}}-\frac {17 a c \sqrt {1-a^2 x^2}}{24 x^3 \sqrt {c-a c x}}-\frac {107 a^2 c \sqrt {1-a^2 x^2}}{96 x^2 \sqrt {c-a c x}}-\frac {149 a^3 c \sqrt {1-a^2 x^2}}{64 x \sqrt {c-a c x}}-\frac {363}{64} a^4 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}\right )+4 \sqrt {2} a^4 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {1-a^2 x^2}}{\sqrt {2} \sqrt {c-a c x}}\right ) \] Output:

-1/4*c*(-a^2*x^2+1)^(1/2)/x^4/(-a*c*x+c)^(1/2)-17/24*a*c*(-a^2*x^2+1)^(1/2 
)/x^3/(-a*c*x+c)^(1/2)-107/96*a^2*c*(-a^2*x^2+1)^(1/2)/x^2/(-a*c*x+c)^(1/2 
)-149/64*a^3*c*(-a^2*x^2+1)^(1/2)/x/(-a*c*x+c)^(1/2)-363/64*a^4*c^(1/2)*ar 
ctanh(c^(1/2)*(-a^2*x^2+1)^(1/2)/(-a*c*x+c)^(1/2))+4*2^(1/2)*a^4*c^(1/2)*a 
rctanh(1/2*c^(1/2)*(-a^2*x^2+1)^(1/2)*2^(1/2)/(-a*c*x+c)^(1/2))
 

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.46 \[ \int \frac {e^{3 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^5} \, dx=-\frac {\sqrt {c-a c x} \left (\sqrt {1+a x} \left (48+136 a x+214 a^2 x^2+447 a^3 x^3\right )+1089 a^4 x^4 \text {arctanh}\left (\sqrt {1+a x}\right )-768 \sqrt {2} a^4 x^4 \text {arctanh}\left (\frac {\sqrt {1+a x}}{\sqrt {2}}\right )\right )}{192 x^4 \sqrt {1-a x}} \] Input:

Integrate[(E^(3*ArcTanh[a*x])*Sqrt[c - a*c*x])/x^5,x]
 

Output:

-1/192*(Sqrt[c - a*c*x]*(Sqrt[1 + a*x]*(48 + 136*a*x + 214*a^2*x^2 + 447*a 
^3*x^3) + 1089*a^4*x^4*ArcTanh[Sqrt[1 + a*x]] - 768*Sqrt[2]*a^4*x^4*ArcTan 
h[Sqrt[1 + a*x]/Sqrt[2]]))/(x^4*Sqrt[1 - a*x])
 

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.61, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {6680, 37, 109, 27, 168, 27, 168, 27, 168, 27, 174, 73, 219, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{3 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^5} \, dx\)

\(\Big \downarrow \) 6680

\(\displaystyle \int \frac {(a x+1)^{3/2} \sqrt {c-a c x}}{x^5 (1-a x)^{3/2}}dx\)

\(\Big \downarrow \) 37

\(\displaystyle \frac {\sqrt {c-a c x} \int \frac {(a x+1)^{3/2}}{x^5 (1-a x)}dx}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {\sqrt {c-a c x} \left (-\frac {1}{4} \int -\frac {a (15 a x+17)}{2 x^4 (1-a x) \sqrt {a x+1}}dx-\frac {\sqrt {a x+1}}{4 x^4}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {c-a c x} \left (\frac {1}{8} a \int \frac {15 a x+17}{x^4 (1-a x) \sqrt {a x+1}}dx-\frac {\sqrt {a x+1}}{4 x^4}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {\sqrt {c-a c x} \left (\frac {1}{8} a \left (-\frac {1}{3} \int -\frac {a (85 a x+107)}{2 x^3 (1-a x) \sqrt {a x+1}}dx-\frac {17 \sqrt {a x+1}}{3 x^3}\right )-\frac {\sqrt {a x+1}}{4 x^4}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {c-a c x} \left (\frac {1}{8} a \left (\frac {1}{6} a \int \frac {85 a x+107}{x^3 (1-a x) \sqrt {a x+1}}dx-\frac {17 \sqrt {a x+1}}{3 x^3}\right )-\frac {\sqrt {a x+1}}{4 x^4}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {\sqrt {c-a c x} \left (\frac {1}{8} a \left (\frac {1}{6} a \left (-\frac {1}{2} \int -\frac {3 a (107 a x+149)}{2 x^2 (1-a x) \sqrt {a x+1}}dx-\frac {107 \sqrt {a x+1}}{2 x^2}\right )-\frac {17 \sqrt {a x+1}}{3 x^3}\right )-\frac {\sqrt {a x+1}}{4 x^4}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {c-a c x} \left (\frac {1}{8} a \left (\frac {1}{6} a \left (\frac {3}{4} a \int \frac {107 a x+149}{x^2 (1-a x) \sqrt {a x+1}}dx-\frac {107 \sqrt {a x+1}}{2 x^2}\right )-\frac {17 \sqrt {a x+1}}{3 x^3}\right )-\frac {\sqrt {a x+1}}{4 x^4}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {\sqrt {c-a c x} \left (\frac {1}{8} a \left (\frac {1}{6} a \left (\frac {3}{4} a \left (-\int -\frac {a (149 a x+363)}{2 x (1-a x) \sqrt {a x+1}}dx-\frac {149 \sqrt {a x+1}}{x}\right )-\frac {107 \sqrt {a x+1}}{2 x^2}\right )-\frac {17 \sqrt {a x+1}}{3 x^3}\right )-\frac {\sqrt {a x+1}}{4 x^4}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {c-a c x} \left (\frac {1}{8} a \left (\frac {1}{6} a \left (\frac {3}{4} a \left (\frac {1}{2} a \int \frac {149 a x+363}{x (1-a x) \sqrt {a x+1}}dx-\frac {149 \sqrt {a x+1}}{x}\right )-\frac {107 \sqrt {a x+1}}{2 x^2}\right )-\frac {17 \sqrt {a x+1}}{3 x^3}\right )-\frac {\sqrt {a x+1}}{4 x^4}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {\sqrt {c-a c x} \left (\frac {1}{8} a \left (\frac {1}{6} a \left (\frac {3}{4} a \left (\frac {1}{2} a \left (363 \int \frac {1}{x \sqrt {a x+1}}dx+512 a \int \frac {1}{(1-a x) \sqrt {a x+1}}dx\right )-\frac {149 \sqrt {a x+1}}{x}\right )-\frac {107 \sqrt {a x+1}}{2 x^2}\right )-\frac {17 \sqrt {a x+1}}{3 x^3}\right )-\frac {\sqrt {a x+1}}{4 x^4}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\sqrt {c-a c x} \left (\frac {1}{8} a \left (\frac {1}{6} a \left (\frac {3}{4} a \left (\frac {1}{2} a \left (1024 \int \frac {1}{1-a x}d\sqrt {a x+1}+\frac {726 \int \frac {1}{\frac {a x+1}{a}-\frac {1}{a}}d\sqrt {a x+1}}{a}\right )-\frac {149 \sqrt {a x+1}}{x}\right )-\frac {107 \sqrt {a x+1}}{2 x^2}\right )-\frac {17 \sqrt {a x+1}}{3 x^3}\right )-\frac {\sqrt {a x+1}}{4 x^4}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {c-a c x} \left (\frac {1}{8} a \left (\frac {1}{6} a \left (\frac {3}{4} a \left (\frac {1}{2} a \left (\frac {726 \int \frac {1}{\frac {a x+1}{a}-\frac {1}{a}}d\sqrt {a x+1}}{a}+512 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a x+1}}{\sqrt {2}}\right )\right )-\frac {149 \sqrt {a x+1}}{x}\right )-\frac {107 \sqrt {a x+1}}{2 x^2}\right )-\frac {17 \sqrt {a x+1}}{3 x^3}\right )-\frac {\sqrt {a x+1}}{4 x^4}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\left (\frac {1}{8} a \left (\frac {1}{6} a \left (\frac {3}{4} a \left (\frac {1}{2} a \left (512 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a x+1}}{\sqrt {2}}\right )-726 \text {arctanh}\left (\sqrt {a x+1}\right )\right )-\frac {149 \sqrt {a x+1}}{x}\right )-\frac {107 \sqrt {a x+1}}{2 x^2}\right )-\frac {17 \sqrt {a x+1}}{3 x^3}\right )-\frac {\sqrt {a x+1}}{4 x^4}\right ) \sqrt {c-a c x}}{\sqrt {1-a x}}\)

Input:

Int[(E^(3*ArcTanh[a*x])*Sqrt[c - a*c*x])/x^5,x]
 

Output:

(Sqrt[c - a*c*x]*(-1/4*Sqrt[1 + a*x]/x^4 + (a*((-17*Sqrt[1 + a*x])/(3*x^3) 
 + (a*((-107*Sqrt[1 + a*x])/(2*x^2) + (3*a*((-149*Sqrt[1 + a*x])/x + (a*(- 
726*ArcTanh[Sqrt[1 + a*x]] + 512*Sqrt[2]*ArcTanh[Sqrt[1 + a*x]/Sqrt[2]]))/ 
2))/4))/6))/8))/Sqrt[1 - a*x]
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 37
Int[(u_.)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> S 
imp[(a + b*x)^m/(c + d*x)^m   Int[u*(c + d*x)^(m + n), x], x] /; FreeQ[{a, 
b, c, d, m, n}, x] && EqQ[b*c - a*d, 0] &&  !SimplerQ[a + b*x, c + d*x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 6680
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol 
] :> Int[u*(c + d*x)^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c 
, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !(IntegerQ[p] || GtQ[c, 0])
 
Maple [A] (verified)

Time = 0.13 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.72

method result size
default \(-\frac {\sqrt {-a^{2} x^{2}+1}\, \sqrt {-c \left (a x -1\right )}\, \left (768 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) a^{4} c \,x^{4}-1089 c \,\operatorname {arctanh}\left (\frac {\sqrt {c \left (a x +1\right )}}{\sqrt {c}}\right ) a^{4} x^{4}-447 a^{3} x^{3} \sqrt {c}\, \sqrt {c \left (a x +1\right )}-214 a^{2} x^{2} \sqrt {c}\, \sqrt {c \left (a x +1\right )}-136 a x \sqrt {c \left (a x +1\right )}\, \sqrt {c}-48 \sqrt {c \left (a x +1\right )}\, \sqrt {c}\right )}{192 \sqrt {c}\, \left (a x -1\right ) \sqrt {c \left (a x +1\right )}\, x^{4}}\) \(171\)
risch \(\frac {\left (447 a^{4} x^{4}+661 a^{3} x^{3}+350 a^{2} x^{2}+184 a x +48\right ) \sqrt {-\frac {\left (-a^{2} x^{2}+1\right ) c}{a x -1}}\, \left (a x -1\right ) c}{192 x^{4} \sqrt {c \left (a x +1\right )}\, \sqrt {-a^{2} x^{2}+1}\, \sqrt {-c \left (a x -1\right )}}-\frac {a^{4} \left (\frac {512 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a c x +c}\, \sqrt {2}}{2 \sqrt {c}}\right )}{\sqrt {c}}-\frac {726 \,\operatorname {arctanh}\left (\frac {\sqrt {a c x +c}}{\sqrt {c}}\right )}{\sqrt {c}}\right ) \sqrt {-\frac {\left (-a^{2} x^{2}+1\right ) c}{a x -1}}\, \left (a x -1\right ) c}{128 \sqrt {-a^{2} x^{2}+1}\, \sqrt {-c \left (a x -1\right )}}\) \(195\)

Input:

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a*c*x+c)^(1/2)/x^5,x,method=_RETURNVERB 
OSE)
 

Output:

-1/192*(-a^2*x^2+1)^(1/2)*(-c*(a*x-1))^(1/2)*(768*2^(1/2)*arctanh(1/2*(c*( 
a*x+1))^(1/2)*2^(1/2)/c^(1/2))*a^4*c*x^4-1089*c*arctanh((c*(a*x+1))^(1/2)/ 
c^(1/2))*a^4*x^4-447*a^3*x^3*c^(1/2)*(c*(a*x+1))^(1/2)-214*a^2*x^2*c^(1/2) 
*(c*(a*x+1))^(1/2)-136*a*x*(c*(a*x+1))^(1/2)*c^(1/2)-48*(c*(a*x+1))^(1/2)* 
c^(1/2))/c^(1/2)/(a*x-1)/(c*(a*x+1))^(1/2)/x^4
 

Fricas [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 416, normalized size of antiderivative = 1.76 \[ \int \frac {e^{3 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^5} \, dx=\left [\frac {768 \, \sqrt {2} {\left (a^{5} x^{5} - a^{4} x^{4}\right )} \sqrt {c} \log \left (-\frac {a^{2} c x^{2} + 2 \, a c x - 2 \, \sqrt {2} \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} \sqrt {c} - 3 \, c}{a^{2} x^{2} - 2 \, a x + 1}\right ) + 1089 \, {\left (a^{5} x^{5} - a^{4} x^{4}\right )} \sqrt {c} \log \left (-\frac {a^{2} c x^{2} + a c x + 2 \, \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} \sqrt {c} - 2 \, c}{a x^{2} - x}\right ) + 2 \, {\left (447 \, a^{3} x^{3} + 214 \, a^{2} x^{2} + 136 \, a x + 48\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c}}{384 \, {\left (a x^{5} - x^{4}\right )}}, \frac {768 \, \sqrt {2} {\left (a^{5} x^{5} - a^{4} x^{4}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {2} \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} \sqrt {-c}}{2 \, {\left (a c x - c\right )}}\right ) - 1089 \, {\left (a^{5} x^{5} - a^{4} x^{4}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} \sqrt {-c}}{a c x - c}\right ) + {\left (447 \, a^{3} x^{3} + 214 \, a^{2} x^{2} + 136 \, a x + 48\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c}}{192 \, {\left (a x^{5} - x^{4}\right )}}\right ] \] Input:

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a*c*x+c)^(1/2)/x^5,x, algorithm=" 
fricas")
 

Output:

[1/384*(768*sqrt(2)*(a^5*x^5 - a^4*x^4)*sqrt(c)*log(-(a^2*c*x^2 + 2*a*c*x 
- 2*sqrt(2)*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)*sqrt(c) - 3*c)/(a^2*x^2 - 
2*a*x + 1)) + 1089*(a^5*x^5 - a^4*x^4)*sqrt(c)*log(-(a^2*c*x^2 + a*c*x + 2 
*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)*sqrt(c) - 2*c)/(a*x^2 - x)) + 2*(447* 
a^3*x^3 + 214*a^2*x^2 + 136*a*x + 48)*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)) 
/(a*x^5 - x^4), 1/192*(768*sqrt(2)*(a^5*x^5 - a^4*x^4)*sqrt(-c)*arctan(1/2 
*sqrt(2)*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)*sqrt(-c)/(a*c*x - c)) - 1089* 
(a^5*x^5 - a^4*x^4)*sqrt(-c)*arctan(sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)*sq 
rt(-c)/(a*c*x - c)) + (447*a^3*x^3 + 214*a^2*x^2 + 136*a*x + 48)*sqrt(-a^2 
*x^2 + 1)*sqrt(-a*c*x + c))/(a*x^5 - x^4)]
 

Sympy [F]

\[ \int \frac {e^{3 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^5} \, dx=\int \frac {\sqrt {- c \left (a x - 1\right )} \left (a x + 1\right )^{3}}{x^{5} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)*(-a*c*x+c)**(1/2)/x**5,x)
 

Output:

Integral(sqrt(-c*(a*x - 1))*(a*x + 1)**3/(x**5*(-(a*x - 1)*(a*x + 1))**(3/ 
2)), x)
 

Maxima [F]

\[ \int \frac {e^{3 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^5} \, dx=\int { \frac {\sqrt {-a c x + c} {\left (a x + 1\right )}^{3}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} x^{5}} \,d x } \] Input:

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a*c*x+c)^(1/2)/x^5,x, algorithm=" 
maxima")
 

Output:

integrate(sqrt(-a*c*x + c)*(a*x + 1)^3/((-a^2*x^2 + 1)^(3/2)*x^5), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {e^{3 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^5} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a*c*x+c)^(1/2)/x^5,x, algorithm=" 
giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{3 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^5} \, dx=\int \frac {\sqrt {c-a\,c\,x}\,{\left (a\,x+1\right )}^3}{x^5\,{\left (1-a^2\,x^2\right )}^{3/2}} \,d x \] Input:

int(((c - a*c*x)^(1/2)*(a*x + 1)^3)/(x^5*(1 - a^2*x^2)^(3/2)),x)
 

Output:

int(((c - a*c*x)^(1/2)*(a*x + 1)^3)/(x^5*(1 - a^2*x^2)^(3/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 211, normalized size of antiderivative = 0.89 \[ \int \frac {e^{3 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^5} \, dx=\frac {\sqrt {c}\, \left (-894 \sqrt {a x +1}\, a^{3} x^{3}-428 \sqrt {a x +1}\, a^{2} x^{2}-272 \sqrt {a x +1}\, a x -96 \sqrt {a x +1}-1536 \sqrt {2}\, \mathrm {log}\left (\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )\right ) a^{4} x^{4}+1690 \sqrt {2}\, a^{4} x^{4}-1089 \,\mathrm {log}\left (-\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )-1\right ) a^{4} x^{4}+1089 \,\mathrm {log}\left (-\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )+1\right ) a^{4} x^{4}+1089 \,\mathrm {log}\left (\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )-1\right ) a^{4} x^{4}-1089 \,\mathrm {log}\left (\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )+1\right ) a^{4} x^{4}\right )}{384 x^{4}} \] Input:

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)*(-a*c*x+c)^(1/2)/x^5,x)
 

Output:

(sqrt(c)*( - 894*sqrt(a*x + 1)*a**3*x**3 - 428*sqrt(a*x + 1)*a**2*x**2 - 2 
72*sqrt(a*x + 1)*a*x - 96*sqrt(a*x + 1) - 1536*sqrt(2)*log(tan(asin(sqrt( 
- a*x + 1)/sqrt(2))/2))*a**4*x**4 + 1690*sqrt(2)*a**4*x**4 - 1089*log( - s 
qrt(2) + tan(asin(sqrt( - a*x + 1)/sqrt(2))/2) - 1)*a**4*x**4 + 1089*log( 
- sqrt(2) + tan(asin(sqrt( - a*x + 1)/sqrt(2))/2) + 1)*a**4*x**4 + 1089*lo 
g(sqrt(2) + tan(asin(sqrt( - a*x + 1)/sqrt(2))/2) - 1)*a**4*x**4 - 1089*lo 
g(sqrt(2) + tan(asin(sqrt( - a*x + 1)/sqrt(2))/2) + 1)*a**4*x**4))/(384*x* 
*4)