\(\int \frac {e^{2 \text {arctanh}(a x)}}{(c-\frac {c}{a x})^{5/2}} \, dx\) [557]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 119 \[ \int \frac {e^{2 \text {arctanh}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\frac {9}{5 a \left (c-\frac {c}{a x}\right )^{5/2}}+\frac {3}{a c \left (c-\frac {c}{a x}\right )^{3/2}}+\frac {9}{a c^2 \sqrt {c-\frac {c}{a x}}}-\frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}-\frac {9 \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{a c^{5/2}} \] Output:

9/5/a/(c-c/a/x)^(5/2)+3/a/c/(c-c/a/x)^(3/2)+9/a/c^2/(c-c/a/x)^(1/2)-x/(c-c 
/a/x)^(5/2)-9*arctanh((c-c/a/x)^(1/2)/c^(1/2))/a/c^(5/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.04 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.50 \[ \int \frac {e^{2 \text {arctanh}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=-\frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}+\frac {9 \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},1,-\frac {3}{2},1-\frac {1}{a x}\right )}{5 a \left (c-\frac {c}{a x}\right )^{5/2}} \] Input:

Integrate[E^(2*ArcTanh[a*x])/(c - c/(a*x))^(5/2),x]
 

Output:

-(x/(c - c/(a*x))^(5/2)) + (9*Hypergeometric2F1[-5/2, 1, -3/2, 1 - 1/(a*x) 
])/(5*a*(c - c/(a*x))^(5/2))
 

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.14, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {6683, 1035, 281, 899, 87, 61, 61, 61, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{2 \text {arctanh}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 6683

\(\displaystyle \int \frac {a x+1}{(1-a x) \left (c-\frac {c}{a x}\right )^{5/2}}dx\)

\(\Big \downarrow \) 1035

\(\displaystyle \int \frac {a+\frac {1}{x}}{\left (\frac {1}{x}-a\right ) \left (c-\frac {c}{a x}\right )^{5/2}}dx\)

\(\Big \downarrow \) 281

\(\displaystyle -\frac {c \int \frac {a+\frac {1}{x}}{\left (c-\frac {c}{a x}\right )^{7/2}}dx}{a}\)

\(\Big \downarrow \) 899

\(\displaystyle \frac {c \int \frac {\left (a+\frac {1}{x}\right ) x^2}{\left (c-\frac {c}{a x}\right )^{7/2}}d\frac {1}{x}}{a}\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {c \left (\frac {9}{2} \int \frac {x}{\left (c-\frac {c}{a x}\right )^{7/2}}d\frac {1}{x}-\frac {a x}{c \left (c-\frac {c}{a x}\right )^{5/2}}\right )}{a}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {c \left (\frac {9}{2} \left (\frac {\int \frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}d\frac {1}{x}}{c}+\frac {2}{5 c \left (c-\frac {c}{a x}\right )^{5/2}}\right )-\frac {a x}{c \left (c-\frac {c}{a x}\right )^{5/2}}\right )}{a}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {c \left (\frac {9}{2} \left (\frac {\frac {\int \frac {x}{\left (c-\frac {c}{a x}\right )^{3/2}}d\frac {1}{x}}{c}+\frac {2}{3 c \left (c-\frac {c}{a x}\right )^{3/2}}}{c}+\frac {2}{5 c \left (c-\frac {c}{a x}\right )^{5/2}}\right )-\frac {a x}{c \left (c-\frac {c}{a x}\right )^{5/2}}\right )}{a}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {c \left (\frac {9}{2} \left (\frac {\frac {\frac {\int \frac {x}{\sqrt {c-\frac {c}{a x}}}d\frac {1}{x}}{c}+\frac {2}{c \sqrt {c-\frac {c}{a x}}}}{c}+\frac {2}{3 c \left (c-\frac {c}{a x}\right )^{3/2}}}{c}+\frac {2}{5 c \left (c-\frac {c}{a x}\right )^{5/2}}\right )-\frac {a x}{c \left (c-\frac {c}{a x}\right )^{5/2}}\right )}{a}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {c \left (\frac {9}{2} \left (\frac {\frac {\frac {2}{c \sqrt {c-\frac {c}{a x}}}-\frac {2 a \int \frac {1}{a-\frac {a}{c x^2}}d\sqrt {c-\frac {c}{a x}}}{c^2}}{c}+\frac {2}{3 c \left (c-\frac {c}{a x}\right )^{3/2}}}{c}+\frac {2}{5 c \left (c-\frac {c}{a x}\right )^{5/2}}\right )-\frac {a x}{c \left (c-\frac {c}{a x}\right )^{5/2}}\right )}{a}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {c \left (\frac {9}{2} \left (\frac {\frac {\frac {2}{c \sqrt {c-\frac {c}{a x}}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{c^{3/2}}}{c}+\frac {2}{3 c \left (c-\frac {c}{a x}\right )^{3/2}}}{c}+\frac {2}{5 c \left (c-\frac {c}{a x}\right )^{5/2}}\right )-\frac {a x}{c \left (c-\frac {c}{a x}\right )^{5/2}}\right )}{a}\)

Input:

Int[E^(2*ArcTanh[a*x])/(c - c/(a*x))^(5/2),x]
 

Output:

(c*(-((a*x)/(c*(c - c/(a*x))^(5/2))) + (9*(2/(5*c*(c - c/(a*x))^(5/2)) + ( 
2/(3*c*(c - c/(a*x))^(3/2)) + (2/(c*Sqrt[c - c/(a*x)]) - (2*ArcTanh[Sqrt[c 
 - c/(a*x)]/Sqrt[c]])/c^(3/2))/c)/c))/2))/a
 

Defintions of rubi rules used

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 281
Int[(u_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_ 
Symbol] :> Simp[(b/d)^p   Int[u*(c + d*x^n)^(p + q), x], x] /; FreeQ[{a, b, 
 c, d, n, p, q}, x] && EqQ[b*c - a*d, 0] && IntegerQ[p] &&  !(IntegerQ[q] & 
& SimplerQ[a + b*x^n, c + d*x^n])
 

rule 899
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol 
] :> -Subst[Int[(a + b/x^n)^p*((c + d/x^n)^q/x^2), x], x, 1/x] /; FreeQ[{a, 
 b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]
 

rule 1035
Int[((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.))^(p_.)*((e_) 
 + (f_.)*(x_)^(n_.))^(r_.), x_Symbol] :> Int[x^(n*(p + r))*(b + a/x^n)^p*(c 
 + d/x^n)^q*(f + e/x^n)^r, x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && EqQ[ 
mn, -n] && IntegerQ[p] && IntegerQ[r]
 

rule 6683
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] 
:> Int[u*(c + d/x)^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, 
d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !G 
tQ[c, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(248\) vs. \(2(103)=206\).

Time = 0.13 (sec) , antiderivative size = 249, normalized size of antiderivative = 2.09

method result size
risch \(-\frac {a x -1}{a \,c^{2} \sqrt {\frac {c \left (a x -1\right )}{a x}}}-\frac {\left (\frac {9 \ln \left (\frac {-\frac {1}{2} a c +a^{2} c x}{\sqrt {a^{2} c}}+\sqrt {a^{2} c \,x^{2}-a c x}\right )}{2 a^{3} \sqrt {a^{2} c}}-\frac {4 \sqrt {\left (x -\frac {1}{a}\right )^{2} a^{2} c +\left (x -\frac {1}{a}\right ) a c}}{5 a^{7} c \left (x -\frac {1}{a}\right )^{3}}-\frac {18 \sqrt {\left (x -\frac {1}{a}\right )^{2} a^{2} c +\left (x -\frac {1}{a}\right ) a c}}{5 a^{6} c \left (x -\frac {1}{a}\right )^{2}}-\frac {54 \sqrt {\left (x -\frac {1}{a}\right )^{2} a^{2} c +\left (x -\frac {1}{a}\right ) a c}}{5 a^{5} c \left (x -\frac {1}{a}\right )}\right ) a^{2} \sqrt {c \left (a x -1\right ) a x}}{c^{2} \sqrt {\frac {c \left (a x -1\right )}{a x}}\, x}\) \(249\)
default \(\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, x \left (-90 \sqrt {x \left (a x -1\right )}\, a^{\frac {9}{2}} x^{4}+80 \left (x \left (a x -1\right )\right )^{\frac {3}{2}} a^{\frac {7}{2}} x^{2}-45 \ln \left (\frac {2 \sqrt {x \left (a x -1\right )}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a^{4} x^{4}+360 \sqrt {x \left (a x -1\right )}\, a^{\frac {7}{2}} x^{3}-132 \left (x \left (a x -1\right )\right )^{\frac {3}{2}} a^{\frac {5}{2}} x +180 \ln \left (\frac {2 \sqrt {x \left (a x -1\right )}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a^{3} x^{3}-540 \sqrt {x \left (a x -1\right )}\, a^{\frac {5}{2}} x^{2}+60 a^{\frac {3}{2}} \left (x \left (a x -1\right )\right )^{\frac {3}{2}}-270 \ln \left (\frac {2 \sqrt {x \left (a x -1\right )}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a^{2} x^{2}+360 \sqrt {x \left (a x -1\right )}\, a^{\frac {3}{2}} x +180 \ln \left (\frac {2 \sqrt {x \left (a x -1\right )}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a x -90 \sqrt {x \left (a x -1\right )}\, \sqrt {a}-45 \ln \left (\frac {2 \sqrt {x \left (a x -1\right )}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right )\right )}{10 \sqrt {x \left (a x -1\right )}\, c^{3} \sqrt {a}\, \left (a x -1\right )^{4}}\) \(328\)

Input:

int((a*x+1)^2/(-a^2*x^2+1)/(c-c/a/x)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-1/a*(a*x-1)/c^2/(c*(a*x-1)/a/x)^(1/2)-(9/2/a^3*ln((-1/2*a*c+a^2*c*x)/(a^2 
*c)^(1/2)+(a^2*c*x^2-a*c*x)^(1/2))/(a^2*c)^(1/2)-4/5/a^7/c/(x-1/a)^3*((x-1 
/a)^2*a^2*c+(x-1/a)*a*c)^(1/2)-18/5/a^6/c/(x-1/a)^2*((x-1/a)^2*a^2*c+(x-1/ 
a)*a*c)^(1/2)-54/5/a^5/c/(x-1/a)*((x-1/a)^2*a^2*c+(x-1/a)*a*c)^(1/2))*a^2/ 
c^2*(c*(a*x-1)*a*x)^(1/2)/(c*(a*x-1)/a/x)^(1/2)/x
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 303, normalized size of antiderivative = 2.55 \[ \int \frac {e^{2 \text {arctanh}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\left [\frac {45 \, {\left (a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1\right )} \sqrt {c} \log \left (-2 \, a c x + 2 \, a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}} + c\right ) - 2 \, {\left (5 \, a^{4} x^{4} - 69 \, a^{3} x^{3} + 105 \, a^{2} x^{2} - 45 \, a x\right )} \sqrt {\frac {a c x - c}{a x}}}{10 \, {\left (a^{4} c^{3} x^{3} - 3 \, a^{3} c^{3} x^{2} + 3 \, a^{2} c^{3} x - a c^{3}\right )}}, \frac {45 \, {\left (a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1\right )} \sqrt {-c} \arctan \left (\frac {a \sqrt {-c} x \sqrt {\frac {a c x - c}{a x}}}{a c x - c}\right ) - {\left (5 \, a^{4} x^{4} - 69 \, a^{3} x^{3} + 105 \, a^{2} x^{2} - 45 \, a x\right )} \sqrt {\frac {a c x - c}{a x}}}{5 \, {\left (a^{4} c^{3} x^{3} - 3 \, a^{3} c^{3} x^{2} + 3 \, a^{2} c^{3} x - a c^{3}\right )}}\right ] \] Input:

integrate((a*x+1)^2/(-a^2*x^2+1)/(c-c/a/x)^(5/2),x, algorithm="fricas")
 

Output:

[1/10*(45*(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)*sqrt(c)*log(-2*a*c*x + 2*a*sqr 
t(c)*x*sqrt((a*c*x - c)/(a*x)) + c) - 2*(5*a^4*x^4 - 69*a^3*x^3 + 105*a^2* 
x^2 - 45*a*x)*sqrt((a*c*x - c)/(a*x)))/(a^4*c^3*x^3 - 3*a^3*c^3*x^2 + 3*a^ 
2*c^3*x - a*c^3), 1/5*(45*(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)*sqrt(-c)*arcta 
n(a*sqrt(-c)*x*sqrt((a*c*x - c)/(a*x))/(a*c*x - c)) - (5*a^4*x^4 - 69*a^3* 
x^3 + 105*a^2*x^2 - 45*a*x)*sqrt((a*c*x - c)/(a*x)))/(a^4*c^3*x^3 - 3*a^3* 
c^3*x^2 + 3*a^2*c^3*x - a*c^3)]
 

Sympy [F]

\[ \int \frac {e^{2 \text {arctanh}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=- \int \frac {a x}{a c^{2} x \sqrt {c - \frac {c}{a x}} - 3 c^{2} \sqrt {c - \frac {c}{a x}} + \frac {3 c^{2} \sqrt {c - \frac {c}{a x}}}{a x} - \frac {c^{2} \sqrt {c - \frac {c}{a x}}}{a^{2} x^{2}}}\, dx - \int \frac {1}{a c^{2} x \sqrt {c - \frac {c}{a x}} - 3 c^{2} \sqrt {c - \frac {c}{a x}} + \frac {3 c^{2} \sqrt {c - \frac {c}{a x}}}{a x} - \frac {c^{2} \sqrt {c - \frac {c}{a x}}}{a^{2} x^{2}}}\, dx \] Input:

integrate((a*x+1)**2/(-a**2*x**2+1)/(c-c/a/x)**(5/2),x)
 

Output:

-Integral(a*x/(a*c**2*x*sqrt(c - c/(a*x)) - 3*c**2*sqrt(c - c/(a*x)) + 3*c 
**2*sqrt(c - c/(a*x))/(a*x) - c**2*sqrt(c - c/(a*x))/(a**2*x**2)), x) - In 
tegral(1/(a*c**2*x*sqrt(c - c/(a*x)) - 3*c**2*sqrt(c - c/(a*x)) + 3*c**2*s 
qrt(c - c/(a*x))/(a*x) - c**2*sqrt(c - c/(a*x))/(a**2*x**2)), x)
 

Maxima [F]

\[ \int \frac {e^{2 \text {arctanh}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\int { -\frac {{\left (a x + 1\right )}^{2}}{{\left (a^{2} x^{2} - 1\right )} {\left (c - \frac {c}{a x}\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((a*x+1)^2/(-a^2*x^2+1)/(c-c/a/x)^(5/2),x, algorithm="maxima")
 

Output:

-integrate((a*x + 1)^2/((a^2*x^2 - 1)*(c - c/(a*x))^(5/2)), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 317 vs. \(2 (103) = 206\).

Time = 0.22 (sec) , antiderivative size = 317, normalized size of antiderivative = 2.66 \[ \int \frac {e^{2 \text {arctanh}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=-\frac {9 \, \log \left (c^{4} {\left | a \right |}\right ) \mathrm {sgn}\left (x\right )}{14 \, a c^{\frac {5}{2}}} + \frac {9 \, \log \left ({\left | 2 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{7} \sqrt {c} {\left | a \right |} - 13 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{6} a c + 36 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{5} c^{\frac {3}{2}} {\left | a \right |} - 55 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{4} a c^{2} + 50 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{3} c^{\frac {5}{2}} {\left | a \right |} - 27 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{2} a c^{3} + 8 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )} c^{\frac {7}{2}} {\left | a \right |} - a c^{4} \right |}\right ) \mathrm {sgn}\left (x\right )}{14 \, a c^{\frac {5}{2}}} - \frac {\sqrt {a^{2} c x^{2} - a c x} {\left | a \right |} \mathrm {sgn}\left (x\right )}{a^{2} c^{3}} \] Input:

integrate((a*x+1)^2/(-a^2*x^2+1)/(c-c/a/x)^(5/2),x, algorithm="giac")
 

Output:

-9/14*log(c^4*abs(a))*sgn(x)/(a*c^(5/2)) + 9/14*log(abs(2*(sqrt(a^2*c)*x - 
 sqrt(a^2*c*x^2 - a*c*x))^7*sqrt(c)*abs(a) - 13*(sqrt(a^2*c)*x - sqrt(a^2* 
c*x^2 - a*c*x))^6*a*c + 36*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x))^5*c^( 
3/2)*abs(a) - 55*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x))^4*a*c^2 + 50*(s 
qrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x))^3*c^(5/2)*abs(a) - 27*(sqrt(a^2*c) 
*x - sqrt(a^2*c*x^2 - a*c*x))^2*a*c^3 + 8*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 
- a*c*x))*c^(7/2)*abs(a) - a*c^4))*sgn(x)/(a*c^(5/2)) - sqrt(a^2*c*x^2 - a 
*c*x)*abs(a)*sgn(x)/(a^2*c^3)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{2 \text {arctanh}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\int -\frac {{\left (a\,x+1\right )}^2}{{\left (c-\frac {c}{a\,x}\right )}^{5/2}\,\left (a^2\,x^2-1\right )} \,d x \] Input:

int(-(a*x + 1)^2/((c - c/(a*x))^(5/2)*(a^2*x^2 - 1)),x)
 

Output:

int(-(a*x + 1)^2/((c - c/(a*x))^(5/2)*(a^2*x^2 - 1)), x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.47 \[ \int \frac {e^{2 \text {arctanh}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\frac {\sqrt {c}\, \left (-180 \sqrt {a x -1}\, \mathrm {log}\left (\sqrt {a x -1}+\sqrt {x}\, \sqrt {a}\right ) a^{2} x^{2}+360 \sqrt {a x -1}\, \mathrm {log}\left (\sqrt {a x -1}+\sqrt {x}\, \sqrt {a}\right ) a x -180 \sqrt {a x -1}\, \mathrm {log}\left (\sqrt {a x -1}+\sqrt {x}\, \sqrt {a}\right )-81 \sqrt {a x -1}\, a^{2} x^{2}+162 \sqrt {a x -1}\, a x -81 \sqrt {a x -1}-20 \sqrt {x}\, \sqrt {a}\, a^{3} x^{3}+276 \sqrt {x}\, \sqrt {a}\, a^{2} x^{2}-420 \sqrt {x}\, \sqrt {a}\, a x +180 \sqrt {x}\, \sqrt {a}\right )}{20 \sqrt {a x -1}\, a \,c^{3} \left (a^{2} x^{2}-2 a x +1\right )} \] Input:

int((a*x+1)^2/(-a^2*x^2+1)/(c-c/a/x)^(5/2),x)
 

Output:

(sqrt(c)*( - 180*sqrt(a*x - 1)*log(sqrt(a*x - 1) + sqrt(x)*sqrt(a))*a**2*x 
**2 + 360*sqrt(a*x - 1)*log(sqrt(a*x - 1) + sqrt(x)*sqrt(a))*a*x - 180*sqr 
t(a*x - 1)*log(sqrt(a*x - 1) + sqrt(x)*sqrt(a)) - 81*sqrt(a*x - 1)*a**2*x* 
*2 + 162*sqrt(a*x - 1)*a*x - 81*sqrt(a*x - 1) - 20*sqrt(x)*sqrt(a)*a**3*x* 
*3 + 276*sqrt(x)*sqrt(a)*a**2*x**2 - 420*sqrt(x)*sqrt(a)*a*x + 180*sqrt(x) 
*sqrt(a)))/(20*sqrt(a*x - 1)*a*c**3*(a**2*x**2 - 2*a*x + 1))