\(\int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} x^2 \, dx\) [659]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 218 \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} x^2 \, dx=\frac {8 \sqrt {c-\frac {c}{a x}} x^3}{\sqrt {1-a x} \sqrt {1+a x}}+\frac {119 \sqrt {c-\frac {c}{a x}} x \sqrt {1+a x}}{8 a^2 \sqrt {1-a x}}-\frac {119 \sqrt {c-\frac {c}{a x}} x^2 \sqrt {1+a x}}{12 a \sqrt {1-a x}}+\frac {\sqrt {c-\frac {c}{a x}} x^3 \sqrt {1+a x}}{3 \sqrt {1-a x}}-\frac {119 \sqrt {c-\frac {c}{a x}} \sqrt {x} \text {arcsinh}\left (\sqrt {a} \sqrt {x}\right )}{8 a^{5/2} \sqrt {1-a x}} \] Output:

8*(c-c/a/x)^(1/2)*x^3/(-a*x+1)^(1/2)/(a*x+1)^(1/2)+119/8*(c-c/a/x)^(1/2)*x 
*(a*x+1)^(1/2)/a^2/(-a*x+1)^(1/2)-119/12*(c-c/a/x)^(1/2)*x^2*(a*x+1)^(1/2) 
/a/(-a*x+1)^(1/2)+1/3*(c-c/a/x)^(1/2)*x^3*(a*x+1)^(1/2)/(-a*x+1)^(1/2)-119 
/8*(c-c/a/x)^(1/2)*x^(1/2)*arcsinh(a^(1/2)*x^(1/2))/a^(5/2)/(-a*x+1)^(1/2)
 

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.46 \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} x^2 \, dx=\frac {\sqrt {c-\frac {c}{a x}} \sqrt {x} \left (\sqrt {a} \sqrt {x} \left (357+119 a x-38 a^2 x^2+8 a^3 x^3\right )-357 \sqrt {1+a x} \text {arcsinh}\left (\sqrt {a} \sqrt {x}\right )\right )}{24 a^{5/2} \sqrt {1-a^2 x^2}} \] Input:

Integrate[(Sqrt[c - c/(a*x)]*x^2)/E^(3*ArcTanh[a*x]),x]
 

Output:

(Sqrt[c - c/(a*x)]*Sqrt[x]*(Sqrt[a]*Sqrt[x]*(357 + 119*a*x - 38*a^2*x^2 + 
8*a^3*x^3) - 357*Sqrt[1 + a*x]*ArcSinh[Sqrt[a]*Sqrt[x]]))/(24*a^(5/2)*Sqrt 
[1 - a^2*x^2])
 

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.63, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6684, 6679, 100, 27, 90, 60, 60, 63, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} \, dx\)

\(\Big \downarrow \) 6684

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \int e^{-3 \text {arctanh}(a x)} x^{3/2} \sqrt {1-a x}dx}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 6679

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \int \frac {x^{3/2} (1-a x)^2}{(a x+1)^{3/2}}dx}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 100

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (\frac {8 x^{5/2}}{\sqrt {a x+1}}-\frac {2 \int \frac {a^2 x^{3/2} (19-a x)}{2 \sqrt {a x+1}}dx}{a^2}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (\frac {8 x^{5/2}}{\sqrt {a x+1}}-\int \frac {x^{3/2} (19-a x)}{\sqrt {a x+1}}dx\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (-\frac {119}{6} \int \frac {x^{3/2}}{\sqrt {a x+1}}dx+\frac {1}{3} x^{5/2} \sqrt {a x+1}+\frac {8 x^{5/2}}{\sqrt {a x+1}}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (-\frac {119}{6} \left (\frac {x^{3/2} \sqrt {a x+1}}{2 a}-\frac {3 \int \frac {\sqrt {x}}{\sqrt {a x+1}}dx}{4 a}\right )+\frac {1}{3} x^{5/2} \sqrt {a x+1}+\frac {8 x^{5/2}}{\sqrt {a x+1}}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (-\frac {119}{6} \left (\frac {x^{3/2} \sqrt {a x+1}}{2 a}-\frac {3 \left (\frac {\sqrt {x} \sqrt {a x+1}}{a}-\frac {\int \frac {1}{\sqrt {x} \sqrt {a x+1}}dx}{2 a}\right )}{4 a}\right )+\frac {1}{3} x^{5/2} \sqrt {a x+1}+\frac {8 x^{5/2}}{\sqrt {a x+1}}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 63

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (-\frac {119}{6} \left (\frac {x^{3/2} \sqrt {a x+1}}{2 a}-\frac {3 \left (\frac {\sqrt {x} \sqrt {a x+1}}{a}-\frac {\int \frac {1}{\sqrt {a x+1}}d\sqrt {x}}{a}\right )}{4 a}\right )+\frac {1}{3} x^{5/2} \sqrt {a x+1}+\frac {8 x^{5/2}}{\sqrt {a x+1}}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {\sqrt {x} \left (-\frac {119}{6} \left (\frac {x^{3/2} \sqrt {a x+1}}{2 a}-\frac {3 \left (\frac {\sqrt {x} \sqrt {a x+1}}{a}-\frac {\text {arcsinh}\left (\sqrt {a} \sqrt {x}\right )}{a^{3/2}}\right )}{4 a}\right )+\frac {1}{3} x^{5/2} \sqrt {a x+1}+\frac {8 x^{5/2}}{\sqrt {a x+1}}\right ) \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x}}\)

Input:

Int[(Sqrt[c - c/(a*x)]*x^2)/E^(3*ArcTanh[a*x]),x]
 

Output:

(Sqrt[c - c/(a*x)]*Sqrt[x]*((8*x^(5/2))/Sqrt[1 + a*x] + (x^(5/2)*Sqrt[1 + 
a*x])/3 - (119*((x^(3/2)*Sqrt[1 + a*x])/(2*a) - (3*((Sqrt[x]*Sqrt[1 + a*x] 
)/a - ArcSinh[Sqrt[a]*Sqrt[x]]/a^(3/2)))/(4*a)))/6))/Sqrt[1 - a*x]
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 63
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2/b   S 
ubst[Int[1/Sqrt[c + d*(x^2/b)], x], x, Sqrt[b*x]], x] /; FreeQ[{b, c, d}, x 
] && GtQ[c, 0]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 100
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[(b*c - a*d)^2*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d^2*(d 
*e - c*f)*(n + 1))), x] - Simp[1/(d^2*(d*e - c*f)*(n + 1))   Int[(c + d*x)^ 
(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*( 
p + 1)) - 2*a*b*d*(d*e*(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ[n, -1] || (EqQ[n 
 + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 6679
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol 
] :> Simp[c^p   Int[u*(1 + d*(x/c))^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] 
, x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ[p] 
|| GtQ[c, 0])
 

rule 6684
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] 
 :> Simp[x^p*((c + d/x)^p/(1 + c*(x/d))^p)   Int[u*(1 + c*(x/d))^p*(E^(n*Ar 
cTanh[a*x])/x^p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 
 0] &&  !IntegerQ[p]
 
Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 176, normalized size of antiderivative = 0.81

method result size
default \(-\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, x \left (16 a^{\frac {7}{2}} x^{3} \sqrt {-x \left (a x +1\right )}-76 a^{\frac {5}{2}} x^{2} \sqrt {-x \left (a x +1\right )}+238 a^{\frac {3}{2}} x \sqrt {-x \left (a x +1\right )}+357 \arctan \left (\frac {2 a x +1}{2 \sqrt {a}\, \sqrt {-x \left (a x +1\right )}}\right ) a x +714 \sqrt {a}\, \sqrt {-x \left (a x +1\right )}+357 \arctan \left (\frac {2 a x +1}{2 \sqrt {a}\, \sqrt {-x \left (a x +1\right )}}\right )\right ) \sqrt {-a^{2} x^{2}+1}}{48 a^{\frac {5}{2}} \left (a x +1\right ) \sqrt {-x \left (a x +1\right )}\, \left (a x -1\right )}\) \(176\)
risch \(\frac {\left (8 a^{2} x^{2}-46 a x +165\right ) \left (a x +1\right ) x \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\frac {c a x \left (-a^{2} x^{2}+1\right )}{a x -1}}}{24 a^{2} \sqrt {-\left (a x +1\right ) a c x}\, \sqrt {-a^{2} x^{2}+1}}+\frac {\left (-\frac {119 \arctan \left (\frac {\sqrt {a^{2} c}\, \left (x +\frac {1}{2 a}\right )}{\sqrt {-a^{2} c \,x^{2}-a c x}}\right )}{16 a^{2} \sqrt {a^{2} c}}-\frac {8 \sqrt {-\left (x +\frac {1}{a}\right )^{2} a^{2} c +\left (x +\frac {1}{a}\right ) a c}}{a^{4} c \left (x +\frac {1}{a}\right )}\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\frac {c a x \left (-a^{2} x^{2}+1\right )}{a x -1}}}{\sqrt {-a^{2} x^{2}+1}}\) \(225\)

Input:

int((c-c/a/x)^(1/2)*x^2/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x,method=_RETURNVERBO 
SE)
 

Output:

-1/48*(c*(a*x-1)/a/x)^(1/2)*x*(16*a^(7/2)*x^3*(-x*(a*x+1))^(1/2)-76*a^(5/2 
)*x^2*(-x*(a*x+1))^(1/2)+238*a^(3/2)*x*(-x*(a*x+1))^(1/2)+357*arctan(1/2/a 
^(1/2)*(2*a*x+1)/(-x*(a*x+1))^(1/2))*a*x+714*a^(1/2)*(-x*(a*x+1))^(1/2)+35 
7*arctan(1/2/a^(1/2)*(2*a*x+1)/(-x*(a*x+1))^(1/2)))/a^(5/2)*(-a^2*x^2+1)^( 
1/2)/(a*x+1)/(-x*(a*x+1))^(1/2)/(a*x-1)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 320, normalized size of antiderivative = 1.47 \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} x^2 \, dx=\left [\frac {357 \, {\left (a^{2} x^{2} - 1\right )} \sqrt {-c} \log \left (-\frac {8 \, a^{3} c x^{3} - 7 \, a c x - 4 \, {\left (2 \, a^{2} x^{2} + a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-c} \sqrt {\frac {a c x - c}{a x}} - c}{a x - 1}\right ) - 4 \, {\left (8 \, a^{4} x^{4} - 38 \, a^{3} x^{3} + 119 \, a^{2} x^{2} + 357 \, a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {\frac {a c x - c}{a x}}}{96 \, {\left (a^{5} x^{2} - a^{3}\right )}}, \frac {357 \, {\left (a^{2} x^{2} - 1\right )} \sqrt {c} \arctan \left (\frac {2 \, \sqrt {-a^{2} x^{2} + 1} a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}}}{2 \, a^{2} c x^{2} - a c x - c}\right ) - 2 \, {\left (8 \, a^{4} x^{4} - 38 \, a^{3} x^{3} + 119 \, a^{2} x^{2} + 357 \, a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {\frac {a c x - c}{a x}}}{48 \, {\left (a^{5} x^{2} - a^{3}\right )}}\right ] \] Input:

integrate((c-c/a/x)^(1/2)*x^2/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorithm="f 
ricas")
 

Output:

[1/96*(357*(a^2*x^2 - 1)*sqrt(-c)*log(-(8*a^3*c*x^3 - 7*a*c*x - 4*(2*a^2*x 
^2 + a*x)*sqrt(-a^2*x^2 + 1)*sqrt(-c)*sqrt((a*c*x - c)/(a*x)) - c)/(a*x - 
1)) - 4*(8*a^4*x^4 - 38*a^3*x^3 + 119*a^2*x^2 + 357*a*x)*sqrt(-a^2*x^2 + 1 
)*sqrt((a*c*x - c)/(a*x)))/(a^5*x^2 - a^3), 1/48*(357*(a^2*x^2 - 1)*sqrt(c 
)*arctan(2*sqrt(-a^2*x^2 + 1)*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x))/(2*a^2*c 
*x^2 - a*c*x - c)) - 2*(8*a^4*x^4 - 38*a^3*x^3 + 119*a^2*x^2 + 357*a*x)*sq 
rt(-a^2*x^2 + 1)*sqrt((a*c*x - c)/(a*x)))/(a^5*x^2 - a^3)]
 

Sympy [F]

\[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} x^2 \, dx=\int \frac {x^{2} \sqrt {- c \left (-1 + \frac {1}{a x}\right )} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}{\left (a x + 1\right )^{3}}\, dx \] Input:

integrate((c-c/a/x)**(1/2)*x**2/(a*x+1)**3*(-a**2*x**2+1)**(3/2),x)
 

Output:

Integral(x**2*sqrt(-c*(-1 + 1/(a*x)))*(-(a*x - 1)*(a*x + 1))**(3/2)/(a*x + 
 1)**3, x)
 

Maxima [F]

\[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} x^2 \, dx=\int { \frac {{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} \sqrt {c - \frac {c}{a x}} x^{2}}{{\left (a x + 1\right )}^{3}} \,d x } \] Input:

integrate((c-c/a/x)^(1/2)*x^2/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorithm="m 
axima")
 

Output:

integrate((-a^2*x^2 + 1)^(3/2)*sqrt(c - c/(a*x))*x^2/(a*x + 1)^3, x)
 

Giac [F(-2)]

Exception generated. \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} x^2 \, dx=\text {Exception raised: TypeError} \] Input:

integrate((c-c/a/x)^(1/2)*x^2/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorithm="g 
iac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} x^2 \, dx=\int \frac {x^2\,\sqrt {c-\frac {c}{a\,x}}\,{\left (1-a^2\,x^2\right )}^{3/2}}{{\left (a\,x+1\right )}^3} \,d x \] Input:

int((x^2*(c - c/(a*x))^(1/2)*(1 - a^2*x^2)^(3/2))/(a*x + 1)^3,x)
                                                                                    
                                                                                    
 

Output:

int((x^2*(c - c/(a*x))^(1/2)*(1 - a^2*x^2)^(3/2))/(a*x + 1)^3, x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.40 \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} x^2 \, dx=\frac {\sqrt {c}\, i \left (2856 \sqrt {a x +1}\, \mathrm {log}\left (\sqrt {a x +1}\, i +\sqrt {x}\, \sqrt {a}\, i \right )-1917 \sqrt {a x +1}-64 \sqrt {x}\, \sqrt {a}\, a^{3} x^{3}+304 \sqrt {x}\, \sqrt {a}\, a^{2} x^{2}-952 \sqrt {x}\, \sqrt {a}\, a x -2856 \sqrt {x}\, \sqrt {a}\right )}{192 \sqrt {a x +1}\, a^{3}} \] Input:

int((c-c/a/x)^(1/2)*x^2/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x)
 

Output:

(sqrt(c)*i*(2856*sqrt(a*x + 1)*log(sqrt(a*x + 1)*i + sqrt(x)*sqrt(a)*i) - 
1917*sqrt(a*x + 1) - 64*sqrt(x)*sqrt(a)*a**3*x**3 + 304*sqrt(x)*sqrt(a)*a* 
*2*x**2 - 952*sqrt(x)*sqrt(a)*a*x - 2856*sqrt(x)*sqrt(a)))/(192*sqrt(a*x + 
 1)*a**3)