\(\int \frac {e^{\text {arctanh}(a x)}}{(c-\frac {c}{a^2 x^2})^4} \, dx\) [676]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 153 \[ \int \frac {e^{\text {arctanh}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^4} \, dx=\frac {1+a x}{7 a c^4 \left (1-a^2 x^2\right )^{7/2}}-\frac {2 (14+11 a x)}{35 a c^4 \left (1-a^2 x^2\right )^{5/2}}+\frac {2 (105+61 a x)}{105 a c^4 \left (1-a^2 x^2\right )^{3/2}}-\frac {4 (105+44 a x)}{105 a c^4 \sqrt {1-a^2 x^2}}-\frac {\sqrt {1-a^2 x^2}}{a c^4}+\frac {\arcsin (a x)}{a c^4} \] Output:

1/7*(a*x+1)/a/c^4/(-a^2*x^2+1)^(7/2)-2/35*(11*a*x+14)/a/c^4/(-a^2*x^2+1)^( 
5/2)+2/105*(61*a*x+105)/a/c^4/(-a^2*x^2+1)^(3/2)-4/105*(44*a*x+105)/a/c^4/ 
(-a^2*x^2+1)^(1/2)-(-a^2*x^2+1)^(1/2)/a/c^4+arcsin(a*x)/a/c^4
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.82 \[ \int \frac {e^{\text {arctanh}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^4} \, dx=\frac {384-279 a x-1065 a^2 x^2+715 a^3 x^3+965 a^4 x^4-559 a^5 x^5-281 a^6 x^6+105 a^7 x^7+105 (-1+a x)^3 (1+a x)^2 \sqrt {1-a^2 x^2} \arcsin (a x)}{105 a c^4 (-1+a x)^3 (1+a x)^2 \sqrt {1-a^2 x^2}} \] Input:

Integrate[E^ArcTanh[a*x]/(c - c/(a^2*x^2))^4,x]
 

Output:

(384 - 279*a*x - 1065*a^2*x^2 + 715*a^3*x^3 + 965*a^4*x^4 - 559*a^5*x^5 - 
281*a^6*x^6 + 105*a^7*x^7 + 105*(-1 + a*x)^3*(1 + a*x)^2*Sqrt[1 - a^2*x^2] 
*ArcSin[a*x])/(105*a*c^4*(-1 + a*x)^3*(1 + a*x)^2*Sqrt[1 - a^2*x^2])
 

Rubi [A] (verified)

Time = 1.19 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.05, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {6707, 6698, 529, 2345, 2345, 2345, 27, 455, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\text {arctanh}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^4} \, dx\)

\(\Big \downarrow \) 6707

\(\displaystyle \frac {a^8 \int \frac {e^{\text {arctanh}(a x)} x^8}{\left (1-a^2 x^2\right )^4}dx}{c^4}\)

\(\Big \downarrow \) 6698

\(\displaystyle \frac {a^8 \int \frac {x^8 (a x+1)}{\left (1-a^2 x^2\right )^{9/2}}dx}{c^4}\)

\(\Big \downarrow \) 529

\(\displaystyle \frac {a^8 \left (\frac {a x+1}{7 a^9 \left (1-a^2 x^2\right )^{7/2}}-\frac {1}{7} \int \frac {\frac {7 x^7}{a}+\frac {7 x^6}{a^2}+\frac {7 x^5}{a^3}+\frac {7 x^4}{a^4}+\frac {7 x^3}{a^5}+\frac {7 x^2}{a^6}+\frac {7 x}{a^7}+\frac {1}{a^8}}{\left (1-a^2 x^2\right )^{7/2}}dx\right )}{c^4}\)

\(\Big \downarrow \) 2345

\(\displaystyle \frac {a^8 \left (\frac {1}{7} \left (\frac {1}{5} \int \frac {\frac {35 x^5}{a^3}+\frac {35 x^4}{a^4}+\frac {70 x^3}{a^5}+\frac {70 x^2}{a^6}+\frac {105 x}{a^7}+\frac {17}{a^8}}{\left (1-a^2 x^2\right )^{5/2}}dx-\frac {2 (11 a x+14)}{5 a^9 \left (1-a^2 x^2\right )^{5/2}}\right )+\frac {a x+1}{7 a^9 \left (1-a^2 x^2\right )^{7/2}}\right )}{c^4}\)

\(\Big \downarrow \) 2345

\(\displaystyle \frac {a^8 \left (\frac {1}{7} \left (\frac {1}{5} \left (\frac {2 (61 a x+105)}{3 a^9 \left (1-a^2 x^2\right )^{3/2}}-\frac {1}{3} \int \frac {\frac {105 x^3}{a^5}+\frac {105 x^2}{a^6}+\frac {315 x}{a^7}+\frac {71}{a^8}}{\left (1-a^2 x^2\right )^{3/2}}dx\right )-\frac {2 (11 a x+14)}{5 a^9 \left (1-a^2 x^2\right )^{5/2}}\right )+\frac {a x+1}{7 a^9 \left (1-a^2 x^2\right )^{7/2}}\right )}{c^4}\)

\(\Big \downarrow \) 2345

\(\displaystyle \frac {a^8 \left (\frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \left (\int \frac {105 (a x+1)}{a^8 \sqrt {1-a^2 x^2}}dx-\frac {4 (44 a x+105)}{a^9 \sqrt {1-a^2 x^2}}\right )+\frac {2 (61 a x+105)}{3 a^9 \left (1-a^2 x^2\right )^{3/2}}\right )-\frac {2 (11 a x+14)}{5 a^9 \left (1-a^2 x^2\right )^{5/2}}\right )+\frac {a x+1}{7 a^9 \left (1-a^2 x^2\right )^{7/2}}\right )}{c^4}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a^8 \left (\frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \left (\frac {105 \int \frac {a x+1}{\sqrt {1-a^2 x^2}}dx}{a^8}-\frac {4 (44 a x+105)}{a^9 \sqrt {1-a^2 x^2}}\right )+\frac {2 (61 a x+105)}{3 a^9 \left (1-a^2 x^2\right )^{3/2}}\right )-\frac {2 (11 a x+14)}{5 a^9 \left (1-a^2 x^2\right )^{5/2}}\right )+\frac {a x+1}{7 a^9 \left (1-a^2 x^2\right )^{7/2}}\right )}{c^4}\)

\(\Big \downarrow \) 455

\(\displaystyle \frac {a^8 \left (\frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} \left (\frac {105 \left (\int \frac {1}{\sqrt {1-a^2 x^2}}dx-\frac {\sqrt {1-a^2 x^2}}{a}\right )}{a^8}-\frac {4 (44 a x+105)}{a^9 \sqrt {1-a^2 x^2}}\right )+\frac {2 (61 a x+105)}{3 a^9 \left (1-a^2 x^2\right )^{3/2}}\right )-\frac {2 (11 a x+14)}{5 a^9 \left (1-a^2 x^2\right )^{5/2}}\right )+\frac {a x+1}{7 a^9 \left (1-a^2 x^2\right )^{7/2}}\right )}{c^4}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {a^8 \left (\frac {a x+1}{7 a^9 \left (1-a^2 x^2\right )^{7/2}}+\frac {1}{7} \left (\frac {1}{5} \left (\frac {2 (61 a x+105)}{3 a^9 \left (1-a^2 x^2\right )^{3/2}}+\frac {1}{3} \left (\frac {105 \left (\frac {\arcsin (a x)}{a}-\frac {\sqrt {1-a^2 x^2}}{a}\right )}{a^8}-\frac {4 (44 a x+105)}{a^9 \sqrt {1-a^2 x^2}}\right )\right )-\frac {2 (11 a x+14)}{5 a^9 \left (1-a^2 x^2\right )^{5/2}}\right )\right )}{c^4}\)

Input:

Int[E^ArcTanh[a*x]/(c - c/(a^2*x^2))^4,x]
 

Output:

(a^8*((1 + a*x)/(7*a^9*(1 - a^2*x^2)^(7/2)) + ((-2*(14 + 11*a*x))/(5*a^9*( 
1 - a^2*x^2)^(5/2)) + ((2*(105 + 61*a*x))/(3*a^9*(1 - a^2*x^2)^(3/2)) + (( 
-4*(105 + 44*a*x))/(a^9*Sqrt[1 - a^2*x^2]) + (105*(-(Sqrt[1 - a^2*x^2]/a) 
+ ArcSin[a*x]/a))/a^8)/3)/5)/7))/c^4
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 455
Int[((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d*(( 
a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] + Simp[c   Int[(a + b*x^2)^p, x], x] 
/; FreeQ[{a, b, c, d, p}, x] &&  !LeQ[p, -1]
 

rule 529
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> With[{Qx = PolynomialQuotient[x^m, a*d + b*c*x, x], R = PolynomialRem 
ainder[x^m, a*d + b*c*x, x]}, Simp[(-c)*R*(c + d*x)^n*((a + b*x^2)^(p + 1)/ 
(2*a*d*(p + 1))), x] + Simp[c/(2*a*(p + 1))   Int[(c + d*x)^(n - 1)*(a + b* 
x^2)^(p + 1)*ExpandToSum[2*a*d*(p + 1)*Qx + R*(n + 2*p + 2), x], x], x]] /; 
 FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && IGtQ[m, 1] && LtQ[p, -1] && EqQ[b* 
c^2 + a*d^2, 0]
 

rule 2345
Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuot 
ient[Pq, a + b*x^2, x], f = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 
 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[(a*g - b 
*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Simp[1/(2*a*(p + 1))   In 
t[(a + b*x^2)^(p + 1)*ExpandToSum[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] 
/; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]
 

rule 6698
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x 
_Symbol] :> Simp[c^p   Int[x^m*(1 - a^2*x^2)^(p - n/2)*(1 + a*x)^n, x], x] 
/; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 
 0]) && IGtQ[(n + 1)/2, 0] &&  !IntegerQ[p - n/2]
 

rule 6707
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symb 
ol] :> Simp[d^p   Int[(u/x^(2*p))*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x 
] /; FreeQ[{a, c, d, n}, x] && EqQ[c + a^2*d, 0] && IntegerQ[p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(337\) vs. \(2(135)=270\).

Time = 0.26 (sec) , antiderivative size = 338, normalized size of antiderivative = 2.21

method result size
risch \(\frac {a^{2} x^{2}-1}{a \sqrt {-a^{2} x^{2}+1}\, c^{4}}-\frac {\left (-\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{a^{8} \sqrt {a^{2}}}-\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{56 a^{13} \left (x -\frac {1}{a}\right )^{4}}-\frac {17 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{112 a^{12} \left (x -\frac {1}{a}\right )^{3}}-\frac {211 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{336 a^{11} \left (x -\frac {1}{a}\right )^{2}}-\frac {1657 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{672 a^{10} \left (x -\frac {1}{a}\right )}+\frac {\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{80 a^{12} \left (x +\frac {1}{a}\right )^{3}}-\frac {7 \sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{60 a^{11} \left (x +\frac {1}{a}\right )^{2}}+\frac {379 \sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{480 a^{10} \left (x +\frac {1}{a}\right )}\right ) a^{8}}{c^{4}}\) \(338\)
default \(\frac {a^{8} \left (\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{a^{8} \sqrt {a^{2}}}-\frac {\sqrt {-a^{2} x^{2}+1}}{a^{9}}+\frac {\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{7 a \left (x -\frac {1}{a}\right )^{4}}-\frac {3 a \left (\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{5 a \left (x -\frac {1}{a}\right )^{3}}-\frac {2 a \left (\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 a \left (x -\frac {1}{a}\right )^{2}}-\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 \left (x -\frac {1}{a}\right )}\right )}{5}\right )}{7}}{8 a^{12}}+\frac {\frac {13 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{80 a \left (x -\frac {1}{a}\right )^{3}}-\frac {13 a \left (\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 a \left (x -\frac {1}{a}\right )^{2}}-\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 \left (x -\frac {1}{a}\right )}\right )}{40}}{a^{11}}+\frac {\frac {35 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{48 a \left (x -\frac {1}{a}\right )^{2}}-\frac {35 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{48 \left (x -\frac {1}{a}\right )}}{a^{10}}+\frac {99 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{32 a^{10} \left (x -\frac {1}{a}\right )}+\frac {-\frac {\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{5 a \left (x +\frac {1}{a}\right )^{3}}+\frac {2 a \left (-\frac {\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{3 a \left (x +\frac {1}{a}\right )^{2}}-\frac {\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{3 \left (x +\frac {1}{a}\right )}\right )}{5}}{16 a^{11}}-\frac {3 \left (-\frac {\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{3 a \left (x +\frac {1}{a}\right )^{2}}-\frac {\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{3 \left (x +\frac {1}{a}\right )}\right )}{8 a^{10}}-\frac {29 \sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{32 a^{10} \left (x +\frac {1}{a}\right )}\right )}{c^{4}}\) \(706\)

Input:

int((a*x+1)/(-a^2*x^2+1)^(1/2)/(c-c/a^2/x^2)^4,x,method=_RETURNVERBOSE)
 

Output:

1/a*(a^2*x^2-1)/(-a^2*x^2+1)^(1/2)/c^4-(-1/a^8/(a^2)^(1/2)*arctan((a^2)^(1 
/2)*x/(-a^2*x^2+1)^(1/2))-1/56/a^13/(x-1/a)^4*(-(x-1/a)^2*a^2-2*a*(x-1/a)) 
^(1/2)-17/112/a^12/(x-1/a)^3*(-(x-1/a)^2*a^2-2*a*(x-1/a))^(1/2)-211/336/a^ 
11/(x-1/a)^2*(-(x-1/a)^2*a^2-2*a*(x-1/a))^(1/2)-1657/672/a^10/(x-1/a)*(-(x 
-1/a)^2*a^2-2*a*(x-1/a))^(1/2)+1/80/a^12/(x+1/a)^3*(-a^2*(x+1/a)^2+2*a*(x+ 
1/a))^(1/2)-7/60/a^11/(x+1/a)^2*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2)+379/480 
/a^10/(x+1/a)*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2))*a^8/c^4
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 282 vs. \(2 (135) = 270\).

Time = 0.10 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.84 \[ \int \frac {e^{\text {arctanh}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^4} \, dx=-\frac {384 \, a^{7} x^{7} - 384 \, a^{6} x^{6} - 1152 \, a^{5} x^{5} + 1152 \, a^{4} x^{4} + 1152 \, a^{3} x^{3} - 1152 \, a^{2} x^{2} - 384 \, a x + 210 \, {\left (a^{7} x^{7} - a^{6} x^{6} - 3 \, a^{5} x^{5} + 3 \, a^{4} x^{4} + 3 \, a^{3} x^{3} - 3 \, a^{2} x^{2} - a x + 1\right )} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{a x}\right ) + {\left (105 \, a^{7} x^{7} - 281 \, a^{6} x^{6} - 559 \, a^{5} x^{5} + 965 \, a^{4} x^{4} + 715 \, a^{3} x^{3} - 1065 \, a^{2} x^{2} - 279 \, a x + 384\right )} \sqrt {-a^{2} x^{2} + 1} + 384}{105 \, {\left (a^{8} c^{4} x^{7} - a^{7} c^{4} x^{6} - 3 \, a^{6} c^{4} x^{5} + 3 \, a^{5} c^{4} x^{4} + 3 \, a^{4} c^{4} x^{3} - 3 \, a^{3} c^{4} x^{2} - a^{2} c^{4} x + a c^{4}\right )}} \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/(c-c/a^2/x^2)^4,x, algorithm="fricas" 
)
 

Output:

-1/105*(384*a^7*x^7 - 384*a^6*x^6 - 1152*a^5*x^5 + 1152*a^4*x^4 + 1152*a^3 
*x^3 - 1152*a^2*x^2 - 384*a*x + 210*(a^7*x^7 - a^6*x^6 - 3*a^5*x^5 + 3*a^4 
*x^4 + 3*a^3*x^3 - 3*a^2*x^2 - a*x + 1)*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a 
*x)) + (105*a^7*x^7 - 281*a^6*x^6 - 559*a^5*x^5 + 965*a^4*x^4 + 715*a^3*x^ 
3 - 1065*a^2*x^2 - 279*a*x + 384)*sqrt(-a^2*x^2 + 1) + 384)/(a^8*c^4*x^7 - 
 a^7*c^4*x^6 - 3*a^6*c^4*x^5 + 3*a^5*c^4*x^4 + 3*a^4*c^4*x^3 - 3*a^3*c^4*x 
^2 - a^2*c^4*x + a*c^4)
 

Sympy [F]

\[ \int \frac {e^{\text {arctanh}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^4} \, dx=\frac {a^{8} \int \frac {x^{8}}{a^{7} x^{7} \sqrt {- a^{2} x^{2} + 1} - a^{6} x^{6} \sqrt {- a^{2} x^{2} + 1} - 3 a^{5} x^{5} \sqrt {- a^{2} x^{2} + 1} + 3 a^{4} x^{4} \sqrt {- a^{2} x^{2} + 1} + 3 a^{3} x^{3} \sqrt {- a^{2} x^{2} + 1} - 3 a^{2} x^{2} \sqrt {- a^{2} x^{2} + 1} - a x \sqrt {- a^{2} x^{2} + 1} + \sqrt {- a^{2} x^{2} + 1}}\, dx}{c^{4}} \] Input:

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)/(c-c/a**2/x**2)**4,x)
 

Output:

a**8*Integral(x**8/(a**7*x**7*sqrt(-a**2*x**2 + 1) - a**6*x**6*sqrt(-a**2* 
x**2 + 1) - 3*a**5*x**5*sqrt(-a**2*x**2 + 1) + 3*a**4*x**4*sqrt(-a**2*x**2 
 + 1) + 3*a**3*x**3*sqrt(-a**2*x**2 + 1) - 3*a**2*x**2*sqrt(-a**2*x**2 + 1 
) - a*x*sqrt(-a**2*x**2 + 1) + sqrt(-a**2*x**2 + 1)), x)/c**4
 

Maxima [F]

\[ \int \frac {e^{\text {arctanh}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^4} \, dx=\int { \frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1} {\left (c - \frac {c}{a^{2} x^{2}}\right )}^{4}} \,d x } \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/(c-c/a^2/x^2)^4,x, algorithm="maxima" 
)
 

Output:

integrate((a*x + 1)/(sqrt(-a^2*x^2 + 1)*(c - c/(a^2*x^2))^4), x)
 

Giac [F]

\[ \int \frac {e^{\text {arctanh}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^4} \, dx=\int { \frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1} {\left (c - \frac {c}{a^{2} x^{2}}\right )}^{4}} \,d x } \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/(c-c/a^2/x^2)^4,x, algorithm="giac")
 

Output:

integrate((a*x + 1)/(sqrt(-a^2*x^2 + 1)*(c - c/(a^2*x^2))^4), x)
 

Mupad [B] (verification not implemented)

Time = 22.54 (sec) , antiderivative size = 613, normalized size of antiderivative = 4.01 \[ \int \frac {e^{\text {arctanh}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^4} \, dx=\frac {35\,a\,\sqrt {1-a^2\,x^2}}{48\,\left (a^4\,c^4\,x^2-2\,a^3\,c^4\,x+a^2\,c^4\right )}+\frac {a\,\sqrt {1-a^2\,x^2}}{8\,\left (a^4\,c^4\,x^2+2\,a^3\,c^4\,x+a^2\,c^4\right )}+\frac {\mathrm {asinh}\left (x\,\sqrt {-a^2}\right )}{c^4\,\sqrt {-a^2}}+\frac {a^3\,\sqrt {1-a^2\,x^2}}{140\,\left (a^6\,c^4\,x^2-2\,a^5\,c^4\,x+a^4\,c^4\right )}-\frac {13\,a^8\,\sqrt {1-a^2\,x^2}}{120\,\left (a^{11}\,c^4\,x^2-2\,a^{10}\,c^4\,x+a^9\,c^4\right )}-\frac {a^8\,\sqrt {1-a^2\,x^2}}{120\,\left (a^{11}\,c^4\,x^2+2\,a^{10}\,c^4\,x+a^9\,c^4\right )}-\frac {\sqrt {1-a^2\,x^2}}{a\,c^4}+\frac {a\,\sqrt {1-a^2\,x^2}}{56\,\left (a^6\,c^4\,x^4-4\,a^5\,c^4\,x^3+6\,a^4\,c^4\,x^2-4\,a^3\,c^4\,x+a^2\,c^4\right )}+\frac {379\,\sqrt {1-a^2\,x^2}}{480\,\sqrt {-a^2}\,\left (c^4\,x\,\sqrt {-a^2}+\frac {c^4\,\sqrt {-a^2}}{a}\right )}-\frac {1657\,\sqrt {1-a^2\,x^2}}{672\,\sqrt {-a^2}\,\left (c^4\,x\,\sqrt {-a^2}-\frac {c^4\,\sqrt {-a^2}}{a}\right )}+\frac {\sqrt {1-a^2\,x^2}}{80\,\sqrt {-a^2}\,\left (3\,c^4\,x\,\sqrt {-a^2}+\frac {c^4\,\sqrt {-a^2}}{a}+a^2\,c^4\,x^3\,\sqrt {-a^2}+3\,a\,c^4\,x^2\,\sqrt {-a^2}\right )}-\frac {17\,\sqrt {1-a^2\,x^2}}{112\,\sqrt {-a^2}\,\left (3\,c^4\,x\,\sqrt {-a^2}-\frac {c^4\,\sqrt {-a^2}}{a}+a^2\,c^4\,x^3\,\sqrt {-a^2}-3\,a\,c^4\,x^2\,\sqrt {-a^2}\right )} \] Input:

int((a*x + 1)/((c - c/(a^2*x^2))^4*(1 - a^2*x^2)^(1/2)),x)
 

Output:

(35*a*(1 - a^2*x^2)^(1/2))/(48*(a^2*c^4 - 2*a^3*c^4*x + a^4*c^4*x^2)) + (a 
*(1 - a^2*x^2)^(1/2))/(8*(a^2*c^4 + 2*a^3*c^4*x + a^4*c^4*x^2)) + asinh(x* 
(-a^2)^(1/2))/(c^4*(-a^2)^(1/2)) + (a^3*(1 - a^2*x^2)^(1/2))/(140*(a^4*c^4 
 - 2*a^5*c^4*x + a^6*c^4*x^2)) - (13*a^8*(1 - a^2*x^2)^(1/2))/(120*(a^9*c^ 
4 - 2*a^10*c^4*x + a^11*c^4*x^2)) - (a^8*(1 - a^2*x^2)^(1/2))/(120*(a^9*c^ 
4 + 2*a^10*c^4*x + a^11*c^4*x^2)) - (1 - a^2*x^2)^(1/2)/(a*c^4) + (a*(1 - 
a^2*x^2)^(1/2))/(56*(a^2*c^4 - 4*a^3*c^4*x + 6*a^4*c^4*x^2 - 4*a^5*c^4*x^3 
 + a^6*c^4*x^4)) + (379*(1 - a^2*x^2)^(1/2))/(480*(-a^2)^(1/2)*(c^4*x*(-a^ 
2)^(1/2) + (c^4*(-a^2)^(1/2))/a)) - (1657*(1 - a^2*x^2)^(1/2))/(672*(-a^2) 
^(1/2)*(c^4*x*(-a^2)^(1/2) - (c^4*(-a^2)^(1/2))/a)) + (1 - a^2*x^2)^(1/2)/ 
(80*(-a^2)^(1/2)*(3*c^4*x*(-a^2)^(1/2) + (c^4*(-a^2)^(1/2))/a + a^2*c^4*x^ 
3*(-a^2)^(1/2) + 3*a*c^4*x^2*(-a^2)^(1/2))) - (17*(1 - a^2*x^2)^(1/2))/(11 
2*(-a^2)^(1/2)*(3*c^4*x*(-a^2)^(1/2) - (c^4*(-a^2)^(1/2))/a + a^2*c^4*x^3* 
(-a^2)^(1/2) - 3*a*c^4*x^2*(-a^2)^(1/2)))
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 345, normalized size of antiderivative = 2.25 \[ \int \frac {e^{\text {arctanh}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^4} \, dx=\frac {105 \sqrt {-a^{2} x^{2}+1}\, \mathit {asin} \left (a x \right ) a^{5} x^{5}-105 \sqrt {-a^{2} x^{2}+1}\, \mathit {asin} \left (a x \right ) a^{4} x^{4}-210 \sqrt {-a^{2} x^{2}+1}\, \mathit {asin} \left (a x \right ) a^{3} x^{3}+210 \sqrt {-a^{2} x^{2}+1}\, \mathit {asin} \left (a x \right ) a^{2} x^{2}+105 \sqrt {-a^{2} x^{2}+1}\, \mathit {asin} \left (a x \right ) a x -105 \sqrt {-a^{2} x^{2}+1}\, \mathit {asin} \left (a x \right )-279 \sqrt {-a^{2} x^{2}+1}\, a^{5} x^{5}+279 \sqrt {-a^{2} x^{2}+1}\, a^{4} x^{4}+558 \sqrt {-a^{2} x^{2}+1}\, a^{3} x^{3}-558 \sqrt {-a^{2} x^{2}+1}\, a^{2} x^{2}-279 \sqrt {-a^{2} x^{2}+1}\, a x +279 \sqrt {-a^{2} x^{2}+1}+105 a^{7} x^{7}-281 a^{6} x^{6}-559 a^{5} x^{5}+965 a^{4} x^{4}+715 a^{3} x^{3}-1065 a^{2} x^{2}-279 a x +384}{105 \sqrt {-a^{2} x^{2}+1}\, a \,c^{4} \left (a^{5} x^{5}-a^{4} x^{4}-2 a^{3} x^{3}+2 a^{2} x^{2}+a x -1\right )} \] Input:

int((a*x+1)/(-a^2*x^2+1)^(1/2)/(c-c/a^2/x^2)^4,x)
 

Output:

(105*sqrt( - a**2*x**2 + 1)*asin(a*x)*a**5*x**5 - 105*sqrt( - a**2*x**2 + 
1)*asin(a*x)*a**4*x**4 - 210*sqrt( - a**2*x**2 + 1)*asin(a*x)*a**3*x**3 + 
210*sqrt( - a**2*x**2 + 1)*asin(a*x)*a**2*x**2 + 105*sqrt( - a**2*x**2 + 1 
)*asin(a*x)*a*x - 105*sqrt( - a**2*x**2 + 1)*asin(a*x) - 279*sqrt( - a**2* 
x**2 + 1)*a**5*x**5 + 279*sqrt( - a**2*x**2 + 1)*a**4*x**4 + 558*sqrt( - a 
**2*x**2 + 1)*a**3*x**3 - 558*sqrt( - a**2*x**2 + 1)*a**2*x**2 - 279*sqrt( 
 - a**2*x**2 + 1)*a*x + 279*sqrt( - a**2*x**2 + 1) + 105*a**7*x**7 - 281*a 
**6*x**6 - 559*a**5*x**5 + 965*a**4*x**4 + 715*a**3*x**3 - 1065*a**2*x**2 
- 279*a*x + 384)/(105*sqrt( - a**2*x**2 + 1)*a*c**4*(a**5*x**5 - a**4*x**4 
 - 2*a**3*x**3 + 2*a**2*x**2 + a*x - 1))