\(\int \frac {e^{\text {arctanh}(a x)} x^2}{(c-a^2 c x^2)^3} \, dx\) [949]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 84 \[ \int \frac {e^{\text {arctanh}(a x)} x^2}{\left (c-a^2 c x^2\right )^3} \, dx=\frac {1+a x}{5 a^3 c^3 \left (1-a^2 x^2\right )^{5/2}}-\frac {5+a x}{15 a^3 c^3 \left (1-a^2 x^2\right )^{3/2}}-\frac {2 x}{15 a^2 c^3 \sqrt {1-a^2 x^2}} \] Output:

1/5*(a*x+1)/a^3/c^3/(-a^2*x^2+1)^(5/2)-1/15*(a*x+5)/a^3/c^3/(-a^2*x^2+1)^( 
3/2)-2/15*x/a^2/c^3/(-a^2*x^2+1)^(1/2)
 

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.81 \[ \int \frac {e^{\text {arctanh}(a x)} x^2}{\left (c-a^2 c x^2\right )^3} \, dx=\frac {-2+2 a x+3 a^2 x^2+2 a^3 x^3-2 a^4 x^4}{15 a^3 c^3 (-1+a x)^2 (1+a x) \sqrt {1-a^2 x^2}} \] Input:

Integrate[(E^ArcTanh[a*x]*x^2)/(c - a^2*c*x^2)^3,x]
 

Output:

(-2 + 2*a*x + 3*a^2*x^2 + 2*a^3*x^3 - 2*a^4*x^4)/(15*a^3*c^3*(-1 + a*x)^2* 
(1 + a*x)*Sqrt[1 - a^2*x^2])
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {6698, 529, 27, 454, 208}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 e^{\text {arctanh}(a x)}}{\left (c-a^2 c x^2\right )^3} \, dx\)

\(\Big \downarrow \) 6698

\(\displaystyle \frac {\int \frac {x^2 (a x+1)}{\left (1-a^2 x^2\right )^{7/2}}dx}{c^3}\)

\(\Big \downarrow \) 529

\(\displaystyle \frac {\frac {a x+1}{5 a^3 \left (1-a^2 x^2\right )^{5/2}}-\frac {1}{5} \int \frac {5 a x+1}{a^2 \left (1-a^2 x^2\right )^{5/2}}dx}{c^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {a x+1}{5 a^3 \left (1-a^2 x^2\right )^{5/2}}-\frac {\int \frac {5 a x+1}{\left (1-a^2 x^2\right )^{5/2}}dx}{5 a^2}}{c^3}\)

\(\Big \downarrow \) 454

\(\displaystyle \frac {\frac {a x+1}{5 a^3 \left (1-a^2 x^2\right )^{5/2}}-\frac {\frac {2}{3} \int \frac {1}{\left (1-a^2 x^2\right )^{3/2}}dx+\frac {a x+5}{3 a \left (1-a^2 x^2\right )^{3/2}}}{5 a^2}}{c^3}\)

\(\Big \downarrow \) 208

\(\displaystyle \frac {\frac {a x+1}{5 a^3 \left (1-a^2 x^2\right )^{5/2}}-\frac {\frac {2 x}{3 \sqrt {1-a^2 x^2}}+\frac {a x+5}{3 a \left (1-a^2 x^2\right )^{3/2}}}{5 a^2}}{c^3}\)

Input:

Int[(E^ArcTanh[a*x]*x^2)/(c - a^2*c*x^2)^3,x]
 

Output:

((1 + a*x)/(5*a^3*(1 - a^2*x^2)^(5/2)) - ((5 + a*x)/(3*a*(1 - a^2*x^2)^(3/ 
2)) + (2*x)/(3*Sqrt[1 - a^2*x^2]))/(5*a^2))/c^3
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 208
Int[((a_) + (b_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[x/(a*Sqrt[a + b*x^2]), 
x] /; FreeQ[{a, b}, x]
 

rule 454
Int[((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((a*d 
 - b*c*x)/(2*a*b*(p + 1)))*(a + b*x^2)^(p + 1), x] + Simp[c*((2*p + 3)/(2*a 
*(p + 1)))   Int[(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x] && L 
tQ[p, -1] && NeQ[p, -3/2]
 

rule 529
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbo 
l] :> With[{Qx = PolynomialQuotient[x^m, a*d + b*c*x, x], R = PolynomialRem 
ainder[x^m, a*d + b*c*x, x]}, Simp[(-c)*R*(c + d*x)^n*((a + b*x^2)^(p + 1)/ 
(2*a*d*(p + 1))), x] + Simp[c/(2*a*(p + 1))   Int[(c + d*x)^(n - 1)*(a + b* 
x^2)^(p + 1)*ExpandToSum[2*a*d*(p + 1)*Qx + R*(n + 2*p + 2), x], x], x]] /; 
 FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && IGtQ[m, 1] && LtQ[p, -1] && EqQ[b* 
c^2 + a*d^2, 0]
 

rule 6698
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x 
_Symbol] :> Simp[c^p   Int[x^m*(1 - a^2*x^2)^(p - n/2)*(1 + a*x)^n, x], x] 
/; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 
 0]) && IGtQ[(n + 1)/2, 0] &&  !IntegerQ[p - n/2]
 
Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.69

method result size
gosper \(\frac {2 a^{4} x^{4}-2 a^{3} x^{3}-3 a^{2} x^{2}-2 a x +2}{15 a^{3} c^{3} \left (a x -1\right ) \left (-a^{2} x^{2}+1\right )^{\frac {3}{2}}}\) \(58\)
trager \(\frac {\left (2 a^{4} x^{4}-2 a^{3} x^{3}-3 a^{2} x^{2}-2 a x +2\right ) \sqrt {-a^{2} x^{2}+1}}{15 c^{3} a^{3} \left (a x -1\right )^{3} \left (a x +1\right )^{2}}\) \(65\)
orering \(\frac {\left (2 a^{4} x^{4}-2 a^{3} x^{3}-3 a^{2} x^{2}-2 a x +2\right ) \left (a x -1\right ) \left (a x +1\right )^{2}}{15 a^{3} \sqrt {-a^{2} x^{2}+1}\, \left (-a^{2} c \,x^{2}+c \right )^{3}}\) \(73\)
default \(-\frac {\frac {\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 a \left (x -\frac {1}{a}\right )^{2}}-\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 \left (x -\frac {1}{a}\right )}}{4 a^{4}}-\frac {-\frac {\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{3 a \left (x +\frac {1}{a}\right )^{2}}-\frac {\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{3 \left (x +\frac {1}{a}\right )}}{8 a^{4}}-\frac {\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{16 a^{4} \left (x +\frac {1}{a}\right )}+\frac {\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{5 a \left (x -\frac {1}{a}\right )^{3}}-\frac {2 a \left (\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 a \left (x -\frac {1}{a}\right )^{2}}-\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 \left (x -\frac {1}{a}\right )}\right )}{5}}{4 a^{5}}-\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{16 a^{4} \left (x -\frac {1}{a}\right )}}{c^{3}}\) \(371\)

Input:

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2/(-a^2*c*x^2+c)^3,x,method=_RETURNVERBOS 
E)
 

Output:

1/15/a^3/c^3/(a*x-1)/(-a^2*x^2+1)^(3/2)*(2*a^4*x^4-2*a^3*x^3-3*a^2*x^2-2*a 
*x+2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 146 vs. \(2 (72) = 144\).

Time = 0.08 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.74 \[ \int \frac {e^{\text {arctanh}(a x)} x^2}{\left (c-a^2 c x^2\right )^3} \, dx=-\frac {2 \, a^{5} x^{5} - 2 \, a^{4} x^{4} - 4 \, a^{3} x^{3} + 4 \, a^{2} x^{2} + 2 \, a x - {\left (2 \, a^{4} x^{4} - 2 \, a^{3} x^{3} - 3 \, a^{2} x^{2} - 2 \, a x + 2\right )} \sqrt {-a^{2} x^{2} + 1} - 2}{15 \, {\left (a^{8} c^{3} x^{5} - a^{7} c^{3} x^{4} - 2 \, a^{6} c^{3} x^{3} + 2 \, a^{5} c^{3} x^{2} + a^{4} c^{3} x - a^{3} c^{3}\right )}} \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2/(-a^2*c*x^2+c)^3,x, algorithm="fr 
icas")
 

Output:

-1/15*(2*a^5*x^5 - 2*a^4*x^4 - 4*a^3*x^3 + 4*a^2*x^2 + 2*a*x - (2*a^4*x^4 
- 2*a^3*x^3 - 3*a^2*x^2 - 2*a*x + 2)*sqrt(-a^2*x^2 + 1) - 2)/(a^8*c^3*x^5 
- a^7*c^3*x^4 - 2*a^6*c^3*x^3 + 2*a^5*c^3*x^2 + a^4*c^3*x - a^3*c^3)
 

Sympy [F]

\[ \int \frac {e^{\text {arctanh}(a x)} x^2}{\left (c-a^2 c x^2\right )^3} \, dx=\frac {\int \frac {x^{2}}{- a^{6} x^{6} \sqrt {- a^{2} x^{2} + 1} + 3 a^{4} x^{4} \sqrt {- a^{2} x^{2} + 1} - 3 a^{2} x^{2} \sqrt {- a^{2} x^{2} + 1} + \sqrt {- a^{2} x^{2} + 1}}\, dx + \int \frac {a x^{3}}{- a^{6} x^{6} \sqrt {- a^{2} x^{2} + 1} + 3 a^{4} x^{4} \sqrt {- a^{2} x^{2} + 1} - 3 a^{2} x^{2} \sqrt {- a^{2} x^{2} + 1} + \sqrt {- a^{2} x^{2} + 1}}\, dx}{c^{3}} \] Input:

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x**2/(-a**2*c*x**2+c)**3,x)
 

Output:

(Integral(x**2/(-a**6*x**6*sqrt(-a**2*x**2 + 1) + 3*a**4*x**4*sqrt(-a**2*x 
**2 + 1) - 3*a**2*x**2*sqrt(-a**2*x**2 + 1) + sqrt(-a**2*x**2 + 1)), x) + 
Integral(a*x**3/(-a**6*x**6*sqrt(-a**2*x**2 + 1) + 3*a**4*x**4*sqrt(-a**2* 
x**2 + 1) - 3*a**2*x**2*sqrt(-a**2*x**2 + 1) + sqrt(-a**2*x**2 + 1)), x))/ 
c**3
 

Maxima [F]

\[ \int \frac {e^{\text {arctanh}(a x)} x^2}{\left (c-a^2 c x^2\right )^3} \, dx=\int { -\frac {{\left (a x + 1\right )} x^{2}}{{\left (a^{2} c x^{2} - c\right )}^{3} \sqrt {-a^{2} x^{2} + 1}} \,d x } \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2/(-a^2*c*x^2+c)^3,x, algorithm="ma 
xima")
 

Output:

-integrate((a*x + 1)*x^2/((a^2*c*x^2 - c)^3*sqrt(-a^2*x^2 + 1)), x)
 

Giac [F]

\[ \int \frac {e^{\text {arctanh}(a x)} x^2}{\left (c-a^2 c x^2\right )^3} \, dx=\int { -\frac {{\left (a x + 1\right )} x^{2}}{{\left (a^{2} c x^{2} - c\right )}^{3} \sqrt {-a^{2} x^{2} + 1}} \,d x } \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2/(-a^2*c*x^2+c)^3,x, algorithm="gi 
ac")
 

Output:

integrate(-(a*x + 1)*x^2/((a^2*c*x^2 - c)^3*sqrt(-a^2*x^2 + 1)), x)
 

Mupad [B] (verification not implemented)

Time = 23.24 (sec) , antiderivative size = 329, normalized size of antiderivative = 3.92 \[ \int \frac {e^{\text {arctanh}(a x)} x^2}{\left (c-a^2 c x^2\right )^3} \, dx=\frac {9\,\sqrt {1-a^2\,x^2}}{80\,\left (a\,c^3\,\sqrt {-a^2}-a^2\,c^3\,x\,\sqrt {-a^2}\right )\,\sqrt {-a^2}}-\frac {\sqrt {1-a^2\,x^2}}{24\,\left (a^5\,c^3\,x^2+2\,a^4\,c^3\,x+a^3\,c^3\right )}-\frac {\sqrt {1-a^2\,x^2}}{48\,\left (a\,c^3\,\sqrt {-a^2}+a^2\,c^3\,x\,\sqrt {-a^2}\right )\,\sqrt {-a^2}}-\frac {\sqrt {1-a^2\,x^2}}{12\,\left (a^5\,c^3\,x^2-2\,a^4\,c^3\,x+a^3\,c^3\right )}+\frac {a^2\,\sqrt {1-a^2\,x^2}}{30\,\left (a^7\,c^3\,x^2-2\,a^6\,c^3\,x+a^5\,c^3\right )}-\frac {\sqrt {1-a^2\,x^2}}{20\,\sqrt {-a^2}\,\left (a\,c^3\,\sqrt {-a^2}+3\,a^3\,c^3\,x^2\,\sqrt {-a^2}-a^4\,c^3\,x^3\,\sqrt {-a^2}-3\,a^2\,c^3\,x\,\sqrt {-a^2}\right )} \] Input:

int((x^2*(a*x + 1))/((c - a^2*c*x^2)^3*(1 - a^2*x^2)^(1/2)),x)
 

Output:

(9*(1 - a^2*x^2)^(1/2))/(80*(a*c^3*(-a^2)^(1/2) - a^2*c^3*x*(-a^2)^(1/2))* 
(-a^2)^(1/2)) - (1 - a^2*x^2)^(1/2)/(24*(a^3*c^3 + 2*a^4*c^3*x + a^5*c^3*x 
^2)) - (1 - a^2*x^2)^(1/2)/(48*(a*c^3*(-a^2)^(1/2) + a^2*c^3*x*(-a^2)^(1/2 
))*(-a^2)^(1/2)) - (1 - a^2*x^2)^(1/2)/(12*(a^3*c^3 - 2*a^4*c^3*x + a^5*c^ 
3*x^2)) + (a^2*(1 - a^2*x^2)^(1/2))/(30*(a^5*c^3 - 2*a^6*c^3*x + a^7*c^3*x 
^2)) - (1 - a^2*x^2)^(1/2)/(20*(-a^2)^(1/2)*(a*c^3*(-a^2)^(1/2) + 3*a^3*c^ 
3*x^2*(-a^2)^(1/2) - a^4*c^3*x^3*(-a^2)^(1/2) - 3*a^2*c^3*x*(-a^2)^(1/2)))
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.67 \[ \int \frac {e^{\text {arctanh}(a x)} x^2}{\left (c-a^2 c x^2\right )^3} \, dx=\frac {-2 \sqrt {-a^{2} x^{2}+1}\, a^{3} x^{3}+2 \sqrt {-a^{2} x^{2}+1}\, a^{2} x^{2}+2 \sqrt {-a^{2} x^{2}+1}\, a x -2 \sqrt {-a^{2} x^{2}+1}-2 a^{4} x^{4}+2 a^{3} x^{3}+3 a^{2} x^{2}+2 a x -2}{15 \sqrt {-a^{2} x^{2}+1}\, a^{3} c^{3} \left (a^{3} x^{3}-a^{2} x^{2}-a x +1\right )} \] Input:

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^2/(-a^2*c*x^2+c)^3,x)
 

Output:

( - 2*sqrt( - a**2*x**2 + 1)*a**3*x**3 + 2*sqrt( - a**2*x**2 + 1)*a**2*x** 
2 + 2*sqrt( - a**2*x**2 + 1)*a*x - 2*sqrt( - a**2*x**2 + 1) - 2*a**4*x**4 
+ 2*a**3*x**3 + 3*a**2*x**2 + 2*a*x - 2)/(15*sqrt( - a**2*x**2 + 1)*a**3*c 
**3*(a**3*x**3 - a**2*x**2 - a*x + 1))