\(\int e^{\frac {3}{2} \coth ^{-1}(a x)} x^2 \, dx\) [78]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 14, antiderivative size = 179 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^2 \, dx=\frac {23 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x}{24 a^2}+\frac {7 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^2}{12 a}+\frac {1}{3} \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^3-\frac {17 \arctan \left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{8 a^3}+\frac {17 \text {arctanh}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{8 a^3} \] Output:

23/24*(1-1/a/x)^(1/4)*(1+1/a/x)^(3/4)*x/a^2+7/12*(1-1/a/x)^(1/4)*(1+1/a/x) 
^(3/4)*x^2/a+1/3*(1-1/a/x)^(1/4)*(1+1/a/x)^(3/4)*x^3-17/8*arctan((1+1/a/x) 
^(1/4)/(1-1/a/x)^(1/4))/a^3+17/8*arctanh((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/ 
a^3
 

Mathematica [A] (verified)

Time = 5.18 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.70 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^2 \, dx=\frac {\frac {128 e^{\frac {3}{2} \coth ^{-1}(a x)}}{\left (-1+e^{2 \coth ^{-1}(a x)}\right )^3}+\frac {240 e^{\frac {3}{2} \coth ^{-1}(a x)}}{\left (-1+e^{2 \coth ^{-1}(a x)}\right )^2}+\frac {180 e^{\frac {3}{2} \coth ^{-1}(a x)}}{-1+e^{2 \coth ^{-1}(a x)}}-102 \arctan \left (e^{\frac {1}{2} \coth ^{-1}(a x)}\right )-51 \log \left (1-e^{\frac {1}{2} \coth ^{-1}(a x)}\right )+51 \log \left (1+e^{\frac {1}{2} \coth ^{-1}(a x)}\right )}{48 a^3} \] Input:

Integrate[E^((3*ArcCoth[a*x])/2)*x^2,x]
 

Output:

((128*E^((3*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^3 + (240*E^((3*Arc 
Coth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^2 + (180*E^((3*ArcCoth[a*x])/2))/ 
(-1 + E^(2*ArcCoth[a*x])) - 102*ArcTan[E^(ArcCoth[a*x]/2)] - 51*Log[1 - E^ 
(ArcCoth[a*x]/2)] + 51*Log[1 + E^(ArcCoth[a*x]/2)])/(48*a^3)
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.04, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.857, Rules used = {6721, 110, 27, 168, 27, 168, 27, 104, 25, 827, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 e^{\frac {3}{2} \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6721

\(\displaystyle -\int \frac {\left (1+\frac {1}{a x}\right )^{3/4} x^4}{\left (1-\frac {1}{a x}\right )^{3/4}}d\frac {1}{x}\)

\(\Big \downarrow \) 110

\(\displaystyle \frac {1}{3} x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {1}{3} \int \frac {\left (7 a+\frac {4}{x}\right ) x^3}{2 a^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}}}d\frac {1}{x}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {\int \frac {\left (7 a+\frac {4}{x}\right ) x^3}{\left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}}}d\frac {1}{x}}{6 a^2}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{3} x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {-\frac {1}{2} \int -\frac {\left (23 a+\frac {14}{x}\right ) x^2}{2 a \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}}}d\frac {1}{x}-\frac {7}{2} a x^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{6 a^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {\frac {\int \frac {\left (23 a+\frac {14}{x}\right ) x^2}{\left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}}}d\frac {1}{x}}{4 a}-\frac {7}{2} a x^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{6 a^2}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{3} x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {\frac {-\int -\frac {51 x}{2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}}}d\frac {1}{x}-23 a x \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{4 a}-\frac {7}{2} a x^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{6 a^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {\frac {\frac {51}{2} \int \frac {x}{\left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}}}d\frac {1}{x}-23 a x \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{4 a}-\frac {7}{2} a x^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{6 a^2}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {1}{3} x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {\frac {102 \int -\frac {1}{\left (1-\frac {1}{x^4}\right ) x^2}d\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}-23 a x \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{4 a}-\frac {7}{2} a x^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{6 a^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{3} x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {\frac {-102 \int \frac {1}{\left (1-\frac {1}{x^4}\right ) x^2}d\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}-23 a x \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{4 a}-\frac {7}{2} a x^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{6 a^2}\)

\(\Big \downarrow \) 827

\(\displaystyle \frac {1}{3} x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {\frac {102 \left (\frac {1}{2} \int \frac {1}{1+\frac {1}{x^2}}d\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}-\frac {1}{2} \int \frac {1}{1-\frac {1}{x^2}}d\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-23 a x \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{4 a}-\frac {7}{2} a x^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{6 a^2}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{3} x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {\frac {102 \left (\frac {1}{2} \arctan \left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \int \frac {1}{1-\frac {1}{x^2}}d\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-23 a x \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{4 a}-\frac {7}{2} a x^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{6 a^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{3} x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {\frac {102 \left (\frac {1}{2} \arctan \left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )\right )-23 a x \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{4 a}-\frac {7}{2} a x^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{6 a^2}\)

Input:

Int[E^((3*ArcCoth[a*x])/2)*x^2,x]
 

Output:

((1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(3/4)*x^3)/3 - ((-7*a*(1 - 1/(a*x))^(1/ 
4)*(1 + 1/(a*x))^(3/4)*x^2)/2 + (-23*a*(1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^( 
3/4)*x + 102*(ArcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)]/2 - ArcTanh[ 
(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)]/2))/(4*a))/(6*a^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 110
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[1/((m + 1)*(b*e - a*f))   Int[(a + b*x)^(m + 1) 
*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + 
p + 2)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && Gt 
Q[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, 
 m + n])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 6721
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x 
/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && 
!IntegerQ[n] && IntegerQ[m]
 
Maple [F]

\[\int \frac {x^{2}}{\left (\frac {a x -1}{a x +1}\right )^{\frac {3}{4}}}d x\]

Input:

int(1/((a*x-1)/(a*x+1))^(3/4)*x^2,x)
 

Output:

int(1/((a*x-1)/(a*x+1))^(3/4)*x^2,x)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.58 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^2 \, dx=\frac {2 \, {\left (8 \, a^{3} x^{3} + 22 \, a^{2} x^{2} + 37 \, a x + 23\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 102 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) + 51 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) - 51 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{48 \, a^{3}} \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/4)*x^2,x, algorithm="fricas")
 

Output:

1/48*(2*(8*a^3*x^3 + 22*a^2*x^2 + 37*a*x + 23)*((a*x - 1)/(a*x + 1))^(1/4) 
 + 102*arctan(((a*x - 1)/(a*x + 1))^(1/4)) + 51*log(((a*x - 1)/(a*x + 1))^ 
(1/4) + 1) - 51*log(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a^3
 

Sympy [F]

\[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^2 \, dx=\int \frac {x^{2}}{\left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}\, dx \] Input:

integrate(1/((a*x-1)/(a*x+1))**(3/4)*x**2,x)
 

Output:

Integral(x**2/((a*x - 1)/(a*x + 1))**(3/4), x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.04 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^2 \, dx=-\frac {1}{48} \, a {\left (\frac {4 \, {\left (17 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {9}{4}} - 30 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{4}} + 45 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}}{\frac {3 \, {\left (a x - 1\right )} a^{4}}{a x + 1} - \frac {3 \, {\left (a x - 1\right )}^{2} a^{4}}{{\left (a x + 1\right )}^{2}} + \frac {{\left (a x - 1\right )}^{3} a^{4}}{{\left (a x + 1\right )}^{3}} - a^{4}} - \frac {102 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{4}} - \frac {51 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{4}} + \frac {51 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{a^{4}}\right )} \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/4)*x^2,x, algorithm="maxima")
 

Output:

-1/48*a*(4*(17*((a*x - 1)/(a*x + 1))^(9/4) - 30*((a*x - 1)/(a*x + 1))^(5/4 
) + 45*((a*x - 1)/(a*x + 1))^(1/4))/(3*(a*x - 1)*a^4/(a*x + 1) - 3*(a*x - 
1)^2*a^4/(a*x + 1)^2 + (a*x - 1)^3*a^4/(a*x + 1)^3 - a^4) - 102*arctan(((a 
*x - 1)/(a*x + 1))^(1/4))/a^4 - 51*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^ 
4 + 51*log(((a*x - 1)/(a*x + 1))^(1/4) - 1)/a^4)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 172, normalized size of antiderivative = 0.96 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^2 \, dx=\frac {1}{48} \, a {\left (\frac {102 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{4}} + \frac {51 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{4}} - \frac {51 \, \log \left ({\left | \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1 \right |}\right )}{a^{4}} + \frac {4 \, {\left (\frac {30 \, {\left (a x - 1\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{a x + 1} - \frac {17 \, {\left (a x - 1\right )}^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{{\left (a x + 1\right )}^{2}} - 45 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}}{a^{4} {\left (\frac {a x - 1}{a x + 1} - 1\right )}^{3}}\right )} \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/4)*x^2,x, algorithm="giac")
 

Output:

1/48*a*(102*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^4 + 51*log(((a*x - 1)/(a 
*x + 1))^(1/4) + 1)/a^4 - 51*log(abs(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a^4 
 + 4*(30*(a*x - 1)*((a*x - 1)/(a*x + 1))^(1/4)/(a*x + 1) - 17*(a*x - 1)^2* 
((a*x - 1)/(a*x + 1))^(1/4)/(a*x + 1)^2 - 45*((a*x - 1)/(a*x + 1))^(1/4))/ 
(a^4*((a*x - 1)/(a*x + 1) - 1)^3))
 

Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.88 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^2 \, dx=\frac {\frac {15\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}}{4}-\frac {5\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{5/4}}{2}+\frac {17\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{9/4}}{12}}{a^3+\frac {3\,a^3\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}-\frac {a^3\,{\left (a\,x-1\right )}^3}{{\left (a\,x+1\right )}^3}-\frac {3\,a^3\,\left (a\,x-1\right )}{a\,x+1}}+\frac {17\,\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{8\,a^3}+\frac {17\,\mathrm {atanh}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{8\,a^3} \] Input:

int(x^2/((a*x - 1)/(a*x + 1))^(3/4),x)
                                                                                    
                                                                                    
 

Output:

((15*((a*x - 1)/(a*x + 1))^(1/4))/4 - (5*((a*x - 1)/(a*x + 1))^(5/4))/2 + 
(17*((a*x - 1)/(a*x + 1))^(9/4))/12)/(a^3 + (3*a^3*(a*x - 1)^2)/(a*x + 1)^ 
2 - (a^3*(a*x - 1)^3)/(a*x + 1)^3 - (3*a^3*(a*x - 1))/(a*x + 1)) + (17*ata 
n(((a*x - 1)/(a*x + 1))^(1/4)))/(8*a^3) + (17*atanh(((a*x - 1)/(a*x + 1))^ 
(1/4)))/(8*a^3)
 

Reduce [F]

\[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^2 \, dx=\int \frac {\left (a x +1\right )^{\frac {3}{4}} x^{2}}{\left (a x -1\right )^{\frac {3}{4}}}d x \] Input:

int(1/((a*x-1)/(a*x+1))^(3/4)*x^2,x)
 

Output:

int(((a*x + 1)**(3/4)*x**2)/(a*x - 1)**(3/4),x)