\(\int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x^3} \, dx\) [83]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 14, antiderivative size = 244 \[ \int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x^3} \, dx=\frac {3}{4} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4}+\frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{7/4}-\frac {9 a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{4 \sqrt {2}}+\frac {9 a^2 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{4 \sqrt {2}}+\frac {9 a^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\left (1+\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}\right ) \sqrt [4]{1+\frac {1}{a x}}}\right )}{4 \sqrt {2}} \] Output:

3/4*a^2*(1-1/a/x)^(1/4)*(1+1/a/x)^(3/4)+1/2*a^2*(1-1/a/x)^(1/4)*(1+1/a/x)^ 
(7/4)+9/8*a^2*arctan(-1+2^(1/2)*(1-1/a/x)^(1/4)/(1+1/a/x)^(1/4))*2^(1/2)+9 
/8*a^2*arctan(1+2^(1/2)*(1-1/a/x)^(1/4)/(1+1/a/x)^(1/4))*2^(1/2)+9/8*a^2*a 
rctanh(2^(1/2)*(1-1/a/x)^(1/4)/(1+(1-1/a/x)^(1/2)/(1+1/a/x)^(1/2))/(1+1/a/ 
x)^(1/4))*2^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.10 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.31 \[ \int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x^3} \, dx=-\frac {8}{3} a^2 e^{\frac {3}{2} \coth ^{-1}(a x)} \left (\operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-e^{2 \coth ^{-1}(a x)}\right )-3 \operatorname {Hypergeometric2F1}\left (\frac {3}{4},2,\frac {7}{4},-e^{2 \coth ^{-1}(a x)}\right )+2 \operatorname {Hypergeometric2F1}\left (\frac {3}{4},3,\frac {7}{4},-e^{2 \coth ^{-1}(a x)}\right )\right ) \] Input:

Integrate[E^((3*ArcCoth[a*x])/2)/x^3,x]
 

Output:

(-8*a^2*E^((3*ArcCoth[a*x])/2)*(Hypergeometric2F1[3/4, 1, 7/4, -E^(2*ArcCo 
th[a*x])] - 3*Hypergeometric2F1[3/4, 2, 7/4, -E^(2*ArcCoth[a*x])] + 2*Hype 
rgeometric2F1[3/4, 3, 7/4, -E^(2*ArcCoth[a*x])]))/3
 

Rubi [A] (warning: unable to verify)

Time = 0.73 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.07, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.929, Rules used = {6721, 90, 60, 73, 770, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x^3} \, dx\)

\(\Big \downarrow \) 6721

\(\displaystyle -\int \frac {\left (1+\frac {1}{a x}\right )^{3/4}}{\left (1-\frac {1}{a x}\right )^{3/4} x}d\frac {1}{x}\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \int \frac {\left (1+\frac {1}{a x}\right )^{3/4}}{\left (1-\frac {1}{a x}\right )^{3/4}}d\frac {1}{x}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \left (\frac {3}{2} \int \frac {1}{\left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}}}d\frac {1}{x}-a \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \left (-6 a \int \frac {1}{\sqrt [4]{2-\frac {1}{x^4}}}d\sqrt [4]{1-\frac {1}{a x}}-a \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}\right )\)

\(\Big \downarrow \) 770

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \left (-6 a \int \frac {1}{1+\frac {1}{x^4}}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}-a \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}\right )\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \left (-6 a \left (\frac {1}{2} \int \frac {1-\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{2} \int \frac {1+\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}\right )-a \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}\right )\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \left (-6 a \left (\frac {1}{2} \int \frac {1-\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{x^2}+1}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{2} \int \frac {1}{\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{x^2}+1}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}\right )\right )-a \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \left (-6 a \left (\frac {1}{2} \left (\frac {\int \frac {1}{-1-\frac {1}{x^2}}d\left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-1-\frac {1}{x^2}}d\left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+1\right )}{\sqrt {2}}\right )+\frac {1}{2} \int \frac {1-\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}\right )-a \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \left (-6 a \left (\frac {1}{2} \int \frac {1-\frac {1}{x^2}}{1+\frac {1}{x^4}}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}\right )}{\sqrt {2}}\right )\right )-a \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}\right )\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \left (-6 a \left (\frac {1}{2} \left (-\frac {\int -\frac {\sqrt {2}-\frac {2 \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}}{-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{x^2}+1}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+1\right )}{\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{x^2}+1}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}\right )}{\sqrt {2}}\right )\right )-a \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \left (-6 a \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-\frac {2 \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}}{-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{x^2}+1}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+1\right )}{\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{x^2}+1}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}\right )}{\sqrt {2}}\right )\right )-a \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \left (-6 a \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-\frac {2 \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}}{-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{x^2}+1}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+1}{\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{x^2}+1}d\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}\right )}{\sqrt {2}}\right )\right )-a \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{2} a^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{7/4}-\frac {3}{4} a \left (-6 a \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{x^2}+1\right )}{2 \sqrt {2}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{2-\frac {1}{x^4}}}+\frac {1}{x^2}+1\right )}{2 \sqrt {2}}\right )\right )-a \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}\right )\)

Input:

Int[E^((3*ArcCoth[a*x])/2)/x^3,x]
 

Output:

(a^2*(1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(7/4))/2 - (3*a*(-(a*(1 - 1/(a*x))^ 
(1/4)*(1 + 1/(a*x))^(3/4)) - 6*a*((-(ArcTan[1 - (Sqrt[2]*(1 - 1/(a*x))^(1/ 
4))/(2 - x^(-4))^(1/4)]/Sqrt[2]) + ArcTan[1 + (Sqrt[2]*(1 - 1/(a*x))^(1/4) 
)/(2 - x^(-4))^(1/4)]/Sqrt[2])/2 + (-1/2*Log[1 - (Sqrt[2]*(1 - 1/(a*x))^(1 
/4))/(2 - x^(-4))^(1/4) + x^(-2)]/Sqrt[2] + Log[1 + (Sqrt[2]*(1 - 1/(a*x)) 
^(1/4))/(2 - x^(-4))^(1/4) + x^(-2)]/(2*Sqrt[2]))/2)))/4
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 770
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + 1/n)   Subst[In 
t[1/(1 - b*x^n)^(p + 1/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, 
 b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p + 1 
/n]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 6721
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x 
/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && 
!IntegerQ[n] && IntegerQ[m]
 
Maple [F]

\[\int \frac {1}{\left (\frac {a x -1}{a x +1}\right )^{\frac {3}{4}} x^{3}}d x\]

Input:

int(1/((a*x-1)/(a*x+1))^(3/4)/x^3,x)
 

Output:

int(1/((a*x-1)/(a*x+1))^(3/4)/x^3,x)
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.82 \[ \int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x^3} \, dx=\frac {18 \, \sqrt {2} a^{2} x^{2} \arctan \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) + 18 \, \sqrt {2} a^{2} x^{2} \arctan \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right ) + 9 \, \sqrt {2} a^{2} x^{2} \log \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - 9 \, \sqrt {2} a^{2} x^{2} \log \left (-\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) + 4 \, {\left (5 \, a^{2} x^{2} + 7 \, a x + 2\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{16 \, x^{2}} \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/4)/x^3,x, algorithm="fricas")
 

Output:

1/16*(18*sqrt(2)*a^2*x^2*arctan(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + 1) + 
 18*sqrt(2)*a^2*x^2*arctan(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) - 1) + 9*sq 
rt(2)*a^2*x^2*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x - 1)/(a* 
x + 1)) + 1) - 9*sqrt(2)*a^2*x^2*log(-sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) 
+ sqrt((a*x - 1)/(a*x + 1)) + 1) + 4*(5*a^2*x^2 + 7*a*x + 2)*((a*x - 1)/(a 
*x + 1))^(1/4))/x^2
 

Sympy [F]

\[ \int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x^3} \, dx=\int \frac {1}{x^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}\, dx \] Input:

integrate(1/((a*x-1)/(a*x+1))**(3/4)/x**3,x)
 

Output:

Integral(1/(x**3*((a*x - 1)/(a*x + 1))**(3/4)), x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 229, normalized size of antiderivative = 0.94 \[ \int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x^3} \, dx=\frac {1}{16} \, {\left (18 \, \sqrt {2} a \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right ) + 18 \, \sqrt {2} a \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right ) + 9 \, \sqrt {2} a \log \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - 9 \, \sqrt {2} a \log \left (-\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) + \frac {8 \, {\left (3 \, a \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{4}} + 7 \, a \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}}{\frac {2 \, {\left (a x - 1\right )}}{a x + 1} + \frac {{\left (a x - 1\right )}^{2}}{{\left (a x + 1\right )}^{2}} + 1}\right )} a \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/4)/x^3,x, algorithm="maxima")
 

Output:

1/16*(18*sqrt(2)*a*arctan(1/2*sqrt(2)*(sqrt(2) + 2*((a*x - 1)/(a*x + 1))^( 
1/4))) + 18*sqrt(2)*a*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*((a*x - 1)/(a*x + 1 
))^(1/4))) + 9*sqrt(2)*a*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a 
*x - 1)/(a*x + 1)) + 1) - 9*sqrt(2)*a*log(-sqrt(2)*((a*x - 1)/(a*x + 1))^( 
1/4) + sqrt((a*x - 1)/(a*x + 1)) + 1) + 8*(3*a*((a*x - 1)/(a*x + 1))^(5/4) 
 + 7*a*((a*x - 1)/(a*x + 1))^(1/4))/(2*(a*x - 1)/(a*x + 1) + (a*x - 1)^2/( 
a*x + 1)^2 + 1))*a
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 225, normalized size of antiderivative = 0.92 \[ \int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x^3} \, dx=\frac {1}{16} \, {\left (18 \, \sqrt {2} a \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right ) + 18 \, \sqrt {2} a \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right ) + 9 \, \sqrt {2} a \log \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - 9 \, \sqrt {2} a \log \left (-\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) + \frac {8 \, {\left (\frac {3 \, {\left (a x - 1\right )} a \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{a x + 1} + 7 \, a \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}}{{\left (\frac {a x - 1}{a x + 1} + 1\right )}^{2}}\right )} a \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/4)/x^3,x, algorithm="giac")
 

Output:

1/16*(18*sqrt(2)*a*arctan(1/2*sqrt(2)*(sqrt(2) + 2*((a*x - 1)/(a*x + 1))^( 
1/4))) + 18*sqrt(2)*a*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*((a*x - 1)/(a*x + 1 
))^(1/4))) + 9*sqrt(2)*a*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a 
*x - 1)/(a*x + 1)) + 1) - 9*sqrt(2)*a*log(-sqrt(2)*((a*x - 1)/(a*x + 1))^( 
1/4) + sqrt((a*x - 1)/(a*x + 1)) + 1) + 8*(3*(a*x - 1)*a*((a*x - 1)/(a*x + 
 1))^(1/4)/(a*x + 1) + 7*a*((a*x - 1)/(a*x + 1))^(1/4))/((a*x - 1)/(a*x + 
1) + 1)^2)*a
 

Mupad [B] (verification not implemented)

Time = 23.30 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.54 \[ \int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x^3} \, dx=\frac {\frac {7\,a^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}}{2}+\frac {3\,a^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{5/4}}{2}}{\frac {{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}+\frac {2\,\left (a\,x-1\right )}{a\,x+1}+1}-\frac {{\left (-1\right )}^{1/4}\,a^2\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )\,9{}\mathrm {i}}{4}-\frac {{\left (-1\right )}^{1/4}\,a^2\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )\,9{}\mathrm {i}}{4} \] Input:

int(1/(x^3*((a*x - 1)/(a*x + 1))^(3/4)),x)
 

Output:

((7*a^2*((a*x - 1)/(a*x + 1))^(1/4))/2 + (3*a^2*((a*x - 1)/(a*x + 1))^(5/4 
))/2)/((a*x - 1)^2/(a*x + 1)^2 + (2*(a*x - 1))/(a*x + 1) + 1) - ((-1)^(1/4 
)*a^2*atan((-1)^(1/4)*((a*x - 1)/(a*x + 1))^(1/4))*9i)/4 - ((-1)^(1/4)*a^2 
*atanh((-1)^(1/4)*((a*x - 1)/(a*x + 1))^(1/4))*9i)/4
 

Reduce [F]

\[ \int \frac {e^{\frac {3}{2} \coth ^{-1}(a x)}}{x^3} \, dx=\int \frac {\left (a x +1\right )^{\frac {3}{4}}}{\left (a x -1\right )^{\frac {3}{4}} x^{3}}d x \] Input:

int(1/((a*x-1)/(a*x+1))^(3/4)/x^3,x)
 

Output:

int((a*x + 1)**(3/4)/((a*x - 1)**(3/4)*x**3),x)