\(\int e^{-\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx\) [104]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 14, antiderivative size = 216 \[ \int e^{-\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=-\frac {63 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x}{64 a^3}+\frac {15 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^2}{32 a^2}-\frac {3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^3}{8 a}+\frac {1}{4} \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{1+\frac {1}{a x}} x^4+\frac {123 \arctan \left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}+\frac {123 \text {arctanh}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4} \] Output:

-63/64*(1-1/a/x)^(3/4)*(1+1/a/x)^(1/4)*x/a^3+15/32*(1-1/a/x)^(3/4)*(1+1/a/ 
x)^(1/4)*x^2/a^2-3/8*(1-1/a/x)^(3/4)*(1+1/a/x)^(1/4)*x^3/a+1/4*(1-1/a/x)^( 
3/4)*(1+1/a/x)^(1/4)*x^4+123/64*arctan((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/a^ 
4+123/64*arctanh((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/a^4
 

Mathematica [A] (verified)

Time = 5.29 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.69 \[ \int e^{-\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\frac {\frac {512 e^{\frac {13}{2} \coth ^{-1}(a x)}}{\left (-1+e^{2 \coth ^{-1}(a x)}\right )^4}-\frac {1152 e^{\frac {9}{2} \coth ^{-1}(a x)}}{\left (-1+e^{2 \coth ^{-1}(a x)}\right )^3}+\frac {1008 e^{\frac {5}{2} \coth ^{-1}(a x)}}{\left (-1+e^{2 \coth ^{-1}(a x)}\right )^2}-\frac {532 e^{\frac {1}{2} \coth ^{-1}(a x)}}{-1+e^{2 \coth ^{-1}(a x)}}-246 \arctan \left (e^{-\frac {1}{2} \coth ^{-1}(a x)}\right )-123 \log \left (1-e^{-\frac {1}{2} \coth ^{-1}(a x)}\right )+123 \log \left (1+e^{-\frac {1}{2} \coth ^{-1}(a x)}\right )}{128 a^4} \] Input:

Integrate[x^3/E^((3*ArcCoth[a*x])/2),x]
 

Output:

((512*E^((13*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^4 - (1152*E^((9*A 
rcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^3 + (1008*E^((5*ArcCoth[a*x])/2 
))/(-1 + E^(2*ArcCoth[a*x]))^2 - (532*E^(ArcCoth[a*x]/2))/(-1 + E^(2*ArcCo 
th[a*x])) - 246*ArcTan[E^(-1/2*ArcCoth[a*x])] - 123*Log[1 - E^(-1/2*ArcCot 
h[a*x])] + 123*Log[1 + E^(-1/2*ArcCoth[a*x])])/(128*a^4)
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.05, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.929, Rules used = {6721, 110, 27, 168, 27, 168, 27, 168, 27, 104, 756, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^3 e^{-\frac {3}{2} \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6721

\(\displaystyle -\int \frac {\left (1-\frac {1}{a x}\right )^{3/4} x^5}{\left (1+\frac {1}{a x}\right )^{3/4}}d\frac {1}{x}\)

\(\Big \downarrow \) 110

\(\displaystyle \frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}-\frac {1}{4} \int -\frac {3 \left (3 a-\frac {2}{x}\right ) x^4}{2 a^2 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4}}d\frac {1}{x}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \int \frac {\left (3 a-\frac {2}{x}\right ) x^4}{\sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4}}d\frac {1}{x}}{8 a^2}+\frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {3 \left (-\frac {1}{3} \int \frac {3 \left (5 a-\frac {4}{x}\right ) x^3}{2 a \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4}}d\frac {1}{x}-a x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\right )}{8 a^2}+\frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \left (-\frac {\int \frac {\left (5 a-\frac {4}{x}\right ) x^3}{\sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4}}d\frac {1}{x}}{2 a}-a x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\right )}{8 a^2}+\frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {3 \left (-\frac {-\frac {1}{2} \int \frac {\left (21 a-\frac {10}{x}\right ) x^2}{2 a \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4}}d\frac {1}{x}-\frac {5}{2} a x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{2 a}-a x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\right )}{8 a^2}+\frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \left (-\frac {-\frac {\int \frac {\left (21 a-\frac {10}{x}\right ) x^2}{\sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4}}d\frac {1}{x}}{4 a}-\frac {5}{2} a x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{2 a}-a x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\right )}{8 a^2}+\frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {3 \left (-\frac {-\frac {-\int \frac {41 x}{2 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4}}d\frac {1}{x}-21 a x \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{4 a}-\frac {5}{2} a x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{2 a}-a x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\right )}{8 a^2}+\frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \left (-\frac {-\frac {-\frac {41}{2} \int \frac {x}{\sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4}}d\frac {1}{x}-21 a x \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{4 a}-\frac {5}{2} a x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{2 a}-a x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\right )}{8 a^2}+\frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {3 \left (-\frac {-\frac {-82 \int \frac {1}{\frac {1}{x^4}-1}d\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}-21 a x \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{4 a}-\frac {5}{2} a x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{2 a}-a x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\right )}{8 a^2}+\frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {3 \left (-\frac {-\frac {-82 \left (-\frac {1}{2} \int \frac {1}{1-\frac {1}{x^2}}d\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}-\frac {1}{2} \int \frac {1}{1+\frac {1}{x^2}}d\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-21 a x \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{4 a}-\frac {5}{2} a x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{2 a}-a x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\right )}{8 a^2}+\frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {3 \left (-\frac {-\frac {-82 \left (-\frac {1}{2} \int \frac {1}{1-\frac {1}{x^2}}d\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )\right )-21 a x \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{4 a}-\frac {5}{2} a x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{2 a}-a x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\right )}{8 a^2}+\frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {3 \left (-\frac {-\frac {-82 \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )\right )-21 a x \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{4 a}-\frac {5}{2} a x^2 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}}{2 a}-a x^3 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\right )}{8 a^2}+\frac {1}{4} x^4 \left (1-\frac {1}{a x}\right )^{3/4} \sqrt [4]{\frac {1}{a x}+1}\)

Input:

Int[x^3/E^((3*ArcCoth[a*x])/2),x]
 

Output:

((1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^4)/4 + (3*(-(a*(1 - 1/(a*x))^(3 
/4)*(1 + 1/(a*x))^(1/4)*x^3) - ((-5*a*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1 
/4)*x^2)/2 - (-21*a*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x - 82*(-1/2*A 
rcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)] - ArcTanh[(1 + 1/(a*x))^(1/ 
4)/(1 - 1/(a*x))^(1/4)]/2))/(4*a))/(2*a)))/(8*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 110
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[1/((m + 1)*(b*e - a*f))   Int[(a + b*x)^(m + 1) 
*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + 
p + 2)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && Gt 
Q[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, 
 m + n])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 6721
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x 
/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && 
!IntegerQ[n] && IntegerQ[m]
 
Maple [F]

\[\int x^{3} \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{4}}d x\]

Input:

int(x^3*((a*x-1)/(a*x+1))^(3/4),x)
 

Output:

int(x^3*((a*x-1)/(a*x+1))^(3/4),x)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.51 \[ \int e^{-\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\frac {2 \, {\left (16 \, a^{4} x^{4} - 8 \, a^{3} x^{3} + 6 \, a^{2} x^{2} - 33 \, a x - 63\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}} - 246 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) + 123 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) - 123 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{128 \, a^{4}} \] Input:

integrate(x^3*((a*x-1)/(a*x+1))^(3/4),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

1/128*(2*(16*a^4*x^4 - 8*a^3*x^3 + 6*a^2*x^2 - 33*a*x - 63)*((a*x - 1)/(a* 
x + 1))^(3/4) - 246*arctan(((a*x - 1)/(a*x + 1))^(1/4)) + 123*log(((a*x - 
1)/(a*x + 1))^(1/4) + 1) - 123*log(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a^4
 

Sympy [F]

\[ \int e^{-\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\int x^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}\, dx \] Input:

integrate(x**3*((a*x-1)/(a*x+1))**(3/4),x)
 

Output:

Integral(x**3*((a*x - 1)/(a*x + 1))**(3/4), x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.04 \[ \int e^{-\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=-\frac {1}{128} \, a {\left (\frac {4 \, {\left (133 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {15}{4}} - 147 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {11}{4}} + 183 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {7}{4}} - 41 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}\right )}}{\frac {4 \, {\left (a x - 1\right )} a^{5}}{a x + 1} - \frac {6 \, {\left (a x - 1\right )}^{2} a^{5}}{{\left (a x + 1\right )}^{2}} + \frac {4 \, {\left (a x - 1\right )}^{3} a^{5}}{{\left (a x + 1\right )}^{3}} - \frac {{\left (a x - 1\right )}^{4} a^{5}}{{\left (a x + 1\right )}^{4}} - a^{5}} + \frac {246 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{5}} - \frac {123 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{5}} + \frac {123 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{a^{5}}\right )} \] Input:

integrate(x^3*((a*x-1)/(a*x+1))^(3/4),x, algorithm="maxima")
 

Output:

-1/128*a*(4*(133*((a*x - 1)/(a*x + 1))^(15/4) - 147*((a*x - 1)/(a*x + 1))^ 
(11/4) + 183*((a*x - 1)/(a*x + 1))^(7/4) - 41*((a*x - 1)/(a*x + 1))^(3/4)) 
/(4*(a*x - 1)*a^5/(a*x + 1) - 6*(a*x - 1)^2*a^5/(a*x + 1)^2 + 4*(a*x - 1)^ 
3*a^5/(a*x + 1)^3 - (a*x - 1)^4*a^5/(a*x + 1)^4 - a^5) + 246*arctan(((a*x 
- 1)/(a*x + 1))^(1/4))/a^5 - 123*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^5 
+ 123*log(((a*x - 1)/(a*x + 1))^(1/4) - 1)/a^5)
 

Giac [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.94 \[ \int e^{-\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=-\frac {1}{128} \, a {\left (\frac {246 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{5}} - \frac {123 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{5}} + \frac {123 \, \log \left ({\left | \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1 \right |}\right )}{a^{5}} - \frac {4 \, {\left (\frac {183 \, {\left (a x - 1\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{a x + 1} - \frac {147 \, {\left (a x - 1\right )}^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{{\left (a x + 1\right )}^{2}} + \frac {133 \, {\left (a x - 1\right )}^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{{\left (a x + 1\right )}^{3}} - 41 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}\right )}}{a^{5} {\left (\frac {a x - 1}{a x + 1} - 1\right )}^{4}}\right )} \] Input:

integrate(x^3*((a*x-1)/(a*x+1))^(3/4),x, algorithm="giac")
 

Output:

-1/128*a*(246*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^5 - 123*log(((a*x - 1) 
/(a*x + 1))^(1/4) + 1)/a^5 + 123*log(abs(((a*x - 1)/(a*x + 1))^(1/4) - 1)) 
/a^5 - 4*(183*(a*x - 1)*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1) - 147*(a*x - 
 1)^2*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1)^2 + 133*(a*x - 1)^3*((a*x - 1) 
/(a*x + 1))^(3/4)/(a*x + 1)^3 - 41*((a*x - 1)/(a*x + 1))^(3/4))/(a^5*((a*x 
 - 1)/(a*x + 1) - 1)^4))
 

Mupad [B] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 193, normalized size of antiderivative = 0.89 \[ \int e^{-\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\frac {123\,\mathrm {atanh}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{64\,a^4}-\frac {123\,\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{64\,a^4}-\frac {\frac {41\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/4}}{32}-\frac {183\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{7/4}}{32}+\frac {147\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{11/4}}{32}-\frac {133\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{15/4}}{32}}{a^4+\frac {6\,a^4\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}-\frac {4\,a^4\,{\left (a\,x-1\right )}^3}{{\left (a\,x+1\right )}^3}+\frac {a^4\,{\left (a\,x-1\right )}^4}{{\left (a\,x+1\right )}^4}-\frac {4\,a^4\,\left (a\,x-1\right )}{a\,x+1}} \] Input:

int(x^3*((a*x - 1)/(a*x + 1))^(3/4),x)
 

Output:

(123*atanh(((a*x - 1)/(a*x + 1))^(1/4)))/(64*a^4) - (123*atan(((a*x - 1)/( 
a*x + 1))^(1/4)))/(64*a^4) - ((41*((a*x - 1)/(a*x + 1))^(3/4))/32 - (183*( 
(a*x - 1)/(a*x + 1))^(7/4))/32 + (147*((a*x - 1)/(a*x + 1))^(11/4))/32 - ( 
133*((a*x - 1)/(a*x + 1))^(15/4))/32)/(a^4 + (6*a^4*(a*x - 1)^2)/(a*x + 1) 
^2 - (4*a^4*(a*x - 1)^3)/(a*x + 1)^3 + (a^4*(a*x - 1)^4)/(a*x + 1)^4 - (4* 
a^4*(a*x - 1))/(a*x + 1))
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int e^{-\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\int \frac {\left (a x -1\right )^{\frac {3}{4}} x^{3}}{\left (a x +1\right )^{\frac {3}{4}}}d x \] Input:

int(x^3*((a*x-1)/(a*x+1))^(3/4),x)
 

Output:

int(((a*x - 1)**(3/4)*x**3)/(a*x + 1)**(3/4),x)