\(\int \frac {e^{\frac {2}{3} \coth ^{-1}(x)}}{x} \, dx\) [131]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 155 \[ \int \frac {e^{\frac {2}{3} \coth ^{-1}(x)}}{x} \, dx=-\sqrt {3} \arctan \left (\frac {1}{\sqrt {3}}-\frac {2 \sqrt [3]{1-\frac {1}{x}}}{\sqrt {3} \sqrt [3]{1+\frac {1}{x}}}\right )-\sqrt {3} \arctan \left (\frac {1}{\sqrt {3}}+\frac {2 \sqrt [3]{1-\frac {1}{x}}}{\sqrt {3} \sqrt [3]{1+\frac {1}{x}}}\right )-\frac {3}{2} \log \left (1+\frac {\sqrt [3]{1-\frac {1}{x}}}{\sqrt [3]{1+\frac {1}{x}}}\right )-\frac {3}{2} \log \left (\sqrt [3]{1-\frac {1}{x}}-\sqrt [3]{1+\frac {1}{x}}\right )-\frac {1}{2} \log \left (1+\frac {1}{x}\right )-\frac {\log (x)}{2} \] Output:

3^(1/2)*arctan(-1/3*3^(1/2)+2/3*(1-1/x)^(1/3)*3^(1/2)/(1+1/x)^(1/3))-arcta 
n(1/3*3^(1/2)+2/3*(1-1/x)^(1/3)*3^(1/2)/(1+1/x)^(1/3))*3^(1/2)-3/2*ln(1+(1 
-1/x)^(1/3)/(1+1/x)^(1/3))-3/2*ln((1-1/x)^(1/3)-(1+1/x)^(1/3))-1/2*ln(1+1/ 
x)-1/2*ln(x)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.05 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.17 \[ \int \frac {e^{\frac {2}{3} \coth ^{-1}(x)}}{x} \, dx=\frac {3}{2} e^{\frac {8}{3} \coth ^{-1}(x)} \operatorname {Hypergeometric2F1}\left (\frac {2}{3},1,\frac {5}{3},e^{4 \coth ^{-1}(x)}\right ) \] Input:

Integrate[E^((2*ArcCoth[x])/3)/x,x]
 

Output:

(3*E^((8*ArcCoth[x])/3)*Hypergeometric2F1[2/3, 1, 5/3, E^(4*ArcCoth[x])])/ 
2
 

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.01, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6721, 140, 72, 102}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\frac {2}{3} \coth ^{-1}(x)}}{x} \, dx\)

\(\Big \downarrow \) 6721

\(\displaystyle -\int \frac {\sqrt [3]{1+\frac {1}{x}} x}{\sqrt [3]{1-\frac {1}{x}}}d\frac {1}{x}\)

\(\Big \downarrow \) 140

\(\displaystyle -\int \frac {1}{\sqrt [3]{1-\frac {1}{x}} \left (1+\frac {1}{x}\right )^{2/3}}d\frac {1}{x}-\int \frac {x}{\sqrt [3]{1-\frac {1}{x}} \left (1+\frac {1}{x}\right )^{2/3}}d\frac {1}{x}\)

\(\Big \downarrow \) 72

\(\displaystyle -\int \frac {x}{\sqrt [3]{1-\frac {1}{x}} \left (1+\frac {1}{x}\right )^{2/3}}d\frac {1}{x}-\sqrt {3} \arctan \left (\frac {1}{\sqrt {3}}-\frac {2 \sqrt [3]{1-\frac {1}{x}}}{\sqrt {3} \sqrt [3]{\frac {1}{x}+1}}\right )-\frac {3}{2} \log \left (\frac {\sqrt [3]{1-\frac {1}{x}}}{\sqrt [3]{\frac {1}{x}+1}}+1\right )-\frac {1}{2} \log \left (\frac {1}{x}+1\right )\)

\(\Big \downarrow \) 102

\(\displaystyle -\sqrt {3} \arctan \left (\frac {1}{\sqrt {3}}-\frac {2 \sqrt [3]{1-\frac {1}{x}}}{\sqrt {3} \sqrt [3]{\frac {1}{x}+1}}\right )-\sqrt {3} \arctan \left (\frac {2 \sqrt [3]{1-\frac {1}{x}}}{\sqrt {3} \sqrt [3]{\frac {1}{x}+1}}+\frac {1}{\sqrt {3}}\right )-\frac {3}{2} \log \left (\frac {\sqrt [3]{1-\frac {1}{x}}}{\sqrt [3]{\frac {1}{x}+1}}+1\right )-\frac {3}{2} \log \left (\sqrt [3]{1-\frac {1}{x}}-\sqrt [3]{\frac {1}{x}+1}\right )-\frac {1}{2} \log \left (\frac {1}{x}+1\right )+\frac {1}{2} \log \left (\frac {1}{x}\right )\)

Input:

Int[E^((2*ArcCoth[x])/3)/x,x]
 

Output:

-(Sqrt[3]*ArcTan[1/Sqrt[3] - (2*(1 - x^(-1))^(1/3))/(Sqrt[3]*(1 + x^(-1))^ 
(1/3))]) - Sqrt[3]*ArcTan[1/Sqrt[3] + (2*(1 - x^(-1))^(1/3))/(Sqrt[3]*(1 + 
 x^(-1))^(1/3))] - (3*Log[1 + (1 - x^(-1))^(1/3)/(1 + x^(-1))^(1/3)])/2 - 
(3*Log[(1 - x^(-1))^(1/3) - (1 + x^(-1))^(1/3)])/2 - Log[1 + x^(-1)]/2 + L 
og[x^(-1)]/2
 

Defintions of rubi rules used

rule 72
Int[1/(((a_.) + (b_.)*(x_))^(1/3)*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> 
 With[{q = Rt[-d/b, 3]}, Simp[Sqrt[3]*(q/d)*ArcTan[1/Sqrt[3] - 2*q*((a + b* 
x)^(1/3)/(Sqrt[3]*(c + d*x)^(1/3)))], x] + (Simp[3*(q/(2*d))*Log[q*((a + b* 
x)^(1/3)/(c + d*x)^(1/3)) + 1], x] + Simp[(q/(2*d))*Log[c + d*x], x])] /; F 
reeQ[{a, b, c, d}, x] && NegQ[d/b]
 

rule 102
Int[1/(((a_.) + (b_.)*(x_))^(1/3)*((c_.) + (d_.)*(x_))^(2/3)*((e_.) + (f_.) 
*(x_))), x_] :> With[{q = Rt[(d*e - c*f)/(b*e - a*f), 3]}, Simp[(-Sqrt[3])* 
q*(ArcTan[1/Sqrt[3] + 2*q*((a + b*x)^(1/3)/(Sqrt[3]*(c + d*x)^(1/3)))]/(d*e 
 - c*f)), x] + (Simp[q*(Log[e + f*x]/(2*(d*e - c*f))), x] - Simp[3*q*(Log[q 
*(a + b*x)^(1/3) - (c + d*x)^(1/3)]/(2*(d*e - c*f))), x])] /; FreeQ[{a, b, 
c, d, e, f}, x]
 

rule 140
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*d^(m + n)*f^p   Int[(a + b*x)^(m - 1)/(c + d*x)^m, x] 
, x] + Int[(a + b*x)^(m - 1)*((e + f*x)^p/(c + d*x)^m)*ExpandToSum[(a + b*x 
)*(c + d*x)^(-p - 1) - (b*d^(-p - 1)*f^p)/(e + f*x)^p, x], x] /; FreeQ[{a, 
b, c, d, e, f, m, n}, x] && EqQ[m + n + p + 1, 0] && ILtQ[p, 0] && (GtQ[m, 
0] || SumSimplerQ[m, -1] ||  !(GtQ[n, 0] || SumSimplerQ[n, -1]))
 

rule 6721
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x 
/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && 
!IntegerQ[n] && IntegerQ[m]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.58 (sec) , antiderivative size = 1039, normalized size of antiderivative = 6.70

method result size
trager \(\text {Expression too large to display}\) \(1039\)

Input:

int(1/((x-1)/(1+x))^(1/3)/x,x,method=_RETURNVERBOSE)
 

Output:

3*RootOf(9*_Z^2-3*_Z+1)*ln(-(-945*RootOf(9*_Z^2-3*_Z+1)*(-(1-x)/(1+x))^(2/ 
3)*x^2+1224*RootOf(9*_Z^2-3*_Z+1)^2*x^2-1890*RootOf(9*_Z^2-3*_Z+1)*(-(1-x) 
/(1+x))^(2/3)*x-945*RootOf(9*_Z^2-3*_Z+1)*(-(1-x)/(1+x))^(1/3)*x^2+168*(-( 
1-x)/(1+x))^(2/3)*x^2-3060*RootOf(9*_Z^2-3*_Z+1)^2*x-945*RootOf(9*_Z^2-3*_ 
Z+1)*(-(1-x)/(1+x))^(2/3)-1353*RootOf(9*_Z^2-3*_Z+1)*x^2+336*(-(1-x)/(1+x) 
)^(2/3)*x+168*(-(1-x)/(1+x))^(1/3)*x^2+1224*RootOf(9*_Z^2-3*_Z+1)^2+945*Ro 
otOf(9*_Z^2-3*_Z+1)*(-(1-x)/(1+x))^(1/3)+1062*RootOf(9*_Z^2-3*_Z+1)*x+168* 
(-(1-x)/(1+x))^(2/3)+304*x^2-1353*RootOf(9*_Z^2-3*_Z+1)-168*(-(1-x)/(1+x)) 
^(1/3)-32*x+304)/x)-3*ln(-(945*RootOf(9*_Z^2-3*_Z+1)*(-(1-x)/(1+x))^(2/3)* 
x^2+1224*RootOf(9*_Z^2-3*_Z+1)^2*x^2+1890*RootOf(9*_Z^2-3*_Z+1)*(-(1-x)/(1 
+x))^(2/3)*x+945*RootOf(9*_Z^2-3*_Z+1)*(-(1-x)/(1+x))^(1/3)*x^2-147*(-(1-x 
)/(1+x))^(2/3)*x^2-3060*RootOf(9*_Z^2-3*_Z+1)^2*x+945*RootOf(9*_Z^2-3*_Z+1 
)*(-(1-x)/(1+x))^(2/3)+537*RootOf(9*_Z^2-3*_Z+1)*x^2-294*(-(1-x)/(1+x))^(2 
/3)*x-147*(-(1-x)/(1+x))^(1/3)*x^2+1224*RootOf(9*_Z^2-3*_Z+1)^2-945*RootOf 
(9*_Z^2-3*_Z+1)*(-(1-x)/(1+x))^(1/3)+978*RootOf(9*_Z^2-3*_Z+1)*x-147*(-(1- 
x)/(1+x))^(2/3)-11*x^2+537*RootOf(9*_Z^2-3*_Z+1)+147*(-(1-x)/(1+x))^(1/3)- 
18*x-11)/x)*RootOf(9*_Z^2-3*_Z+1)+ln(-(945*RootOf(9*_Z^2-3*_Z+1)*(-(1-x)/( 
1+x))^(2/3)*x^2+1224*RootOf(9*_Z^2-3*_Z+1)^2*x^2+1890*RootOf(9*_Z^2-3*_Z+1 
)*(-(1-x)/(1+x))^(2/3)*x+945*RootOf(9*_Z^2-3*_Z+1)*(-(1-x)/(1+x))^(1/3)*x^ 
2-147*(-(1-x)/(1+x))^(2/3)*x^2-3060*RootOf(9*_Z^2-3*_Z+1)^2*x+945*RootO...
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.55 \[ \int \frac {e^{\frac {2}{3} \coth ^{-1}(x)}}{x} \, dx=\sqrt {3} \arctan \left (\frac {2}{3} \, \sqrt {3} \left (\frac {x - 1}{x + 1}\right )^{\frac {2}{3}} + \frac {1}{3} \, \sqrt {3}\right ) - \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {2}{3}} - 1\right ) + \frac {1}{2} \, \log \left (\frac {{\left (x + 1\right )} \left (\frac {x - 1}{x + 1}\right )^{\frac {2}{3}} + {\left (x - 1\right )} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + x + 1}{x + 1}\right ) \] Input:

integrate(1/((x-1)/(1+x))^(1/3)/x,x, algorithm="fricas")
 

Output:

sqrt(3)*arctan(2/3*sqrt(3)*((x - 1)/(x + 1))^(2/3) + 1/3*sqrt(3)) - log((( 
x - 1)/(x + 1))^(2/3) - 1) + 1/2*log(((x + 1)*((x - 1)/(x + 1))^(2/3) + (x 
 - 1)*((x - 1)/(x + 1))^(1/3) + x + 1)/(x + 1))
 

Sympy [F]

\[ \int \frac {e^{\frac {2}{3} \coth ^{-1}(x)}}{x} \, dx=\int \frac {1}{x \sqrt [3]{\frac {x - 1}{x + 1}}}\, dx \] Input:

integrate(1/((x-1)/(1+x))**(1/3)/x,x)
 

Output:

Integral(1/(x*((x - 1)/(x + 1))**(1/3)), x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.90 \[ \int \frac {e^{\frac {2}{3} \coth ^{-1}(x)}}{x} \, dx=-\sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right )}\right ) + \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} - 1\right )}\right ) + \frac {1}{2} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {2}{3}} + \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) + \frac {1}{2} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {2}{3}} - \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) - \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} + 1\right ) - \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}} - 1\right ) \] Input:

integrate(1/((x-1)/(1+x))^(1/3)/x,x, algorithm="maxima")
 

Output:

-sqrt(3)*arctan(1/3*sqrt(3)*(2*((x - 1)/(x + 1))^(1/3) + 1)) + sqrt(3)*arc 
tan(1/3*sqrt(3)*(2*((x - 1)/(x + 1))^(1/3) - 1)) + 1/2*log(((x - 1)/(x + 1 
))^(2/3) + ((x - 1)/(x + 1))^(1/3) + 1) + 1/2*log(((x - 1)/(x + 1))^(2/3) 
- ((x - 1)/(x + 1))^(1/3) + 1) - log(((x - 1)/(x + 1))^(1/3) + 1) - log((( 
x - 1)/(x + 1))^(1/3) - 1)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.51 \[ \int \frac {e^{\frac {2}{3} \coth ^{-1}(x)}}{x} \, dx=\sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {2}{3}} + 1\right )}\right ) + \frac {1}{2} \, \log \left (\left (\frac {x - 1}{x + 1}\right )^{\frac {2}{3}} + \frac {{\left (x - 1\right )} \left (\frac {x - 1}{x + 1}\right )^{\frac {1}{3}}}{x + 1} + 1\right ) - \log \left ({\left | \left (\frac {x - 1}{x + 1}\right )^{\frac {2}{3}} - 1 \right |}\right ) \] Input:

integrate(1/((x-1)/(1+x))^(1/3)/x,x, algorithm="giac")
 

Output:

sqrt(3)*arctan(1/3*sqrt(3)*(2*((x - 1)/(x + 1))^(2/3) + 1)) + 1/2*log(((x 
- 1)/(x + 1))^(2/3) + (x - 1)*((x - 1)/(x + 1))^(1/3)/(x + 1) + 1) - log(a 
bs(((x - 1)/(x + 1))^(2/3) - 1))
 

Mupad [B] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.53 \[ \int \frac {e^{\frac {2}{3} \coth ^{-1}(x)}}{x} \, dx=-\ln \left (1296\,{\left (\frac {x-1}{x+1}\right )}^{2/3}-1296\right )-\ln \left (1296\,{\left (\frac {x-1}{x+1}\right )}^{2/3}+648-\sqrt {3}\,648{}\mathrm {i}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )+\ln \left (1296\,{\left (\frac {x-1}{x+1}\right )}^{2/3}+648+\sqrt {3}\,648{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right ) \] Input:

int(1/(x*((x - 1)/(x + 1))^(1/3)),x)
 

Output:

log(3^(1/2)*648i + 1296*((x - 1)/(x + 1))^(2/3) + 648)*((3^(1/2)*1i)/2 + 1 
/2) - log(1296*((x - 1)/(x + 1))^(2/3) - 3^(1/2)*648i + 648)*((3^(1/2)*1i) 
/2 - 1/2) - log(1296*((x - 1)/(x + 1))^(2/3) - 1296)
 

Reduce [F]

\[ \int \frac {e^{\frac {2}{3} \coth ^{-1}(x)}}{x} \, dx=\int \frac {\left (x +1\right )^{\frac {1}{3}}}{\left (x -1\right )^{\frac {1}{3}} x}d x \] Input:

int(1/((x-1)/(1+x))^(1/3)/x,x)
 

Output:

int((x + 1)**(1/3)/((x - 1)**(1/3)*x),x)