\(\int e^{n \coth ^{-1}(a x)} x \, dx\) [158]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 10, antiderivative size = 122 \[ \int e^{n \coth ^{-1}(a x)} x \, dx=\frac {1}{2} \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x^2+\frac {2 n \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {1}{2} (-2+n)} \operatorname {Hypergeometric2F1}\left (2,1-\frac {n}{2},2-\frac {n}{2},\frac {a-\frac {1}{x}}{a+\frac {1}{x}}\right )}{a^2 (2-n)} \] Output:

1/2*(1-1/a/x)^(1-1/2*n)*(1+1/a/x)^(1+1/2*n)*x^2+2*n*(1-1/a/x)^(1-1/2*n)*(1 
+1/a/x)^(-1+1/2*n)*hypergeom([2, 1-1/2*n],[2-1/2*n],(a-1/x)/(a+1/x))/a^2/( 
2-n)
 

Mathematica [A] (verified)

Time = 0.35 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.80 \[ \int e^{n \coth ^{-1}(a x)} x \, dx=\frac {e^{n \coth ^{-1}(a x)} \left (e^{2 \coth ^{-1}(a x)} n^2 \operatorname {Hypergeometric2F1}\left (1,1+\frac {n}{2},2+\frac {n}{2},e^{2 \coth ^{-1}(a x)}\right )+(2+n) \left (-1+a n x+a^2 x^2+n \operatorname {Hypergeometric2F1}\left (1,\frac {n}{2},1+\frac {n}{2},e^{2 \coth ^{-1}(a x)}\right )\right )\right )}{2 a^2 (2+n)} \] Input:

Integrate[E^(n*ArcCoth[a*x])*x,x]
 

Output:

(E^(n*ArcCoth[a*x])*(E^(2*ArcCoth[a*x])*n^2*Hypergeometric2F1[1, 1 + n/2, 
2 + n/2, E^(2*ArcCoth[a*x])] + (2 + n)*(-1 + a*n*x + a^2*x^2 + n*Hypergeom 
etric2F1[1, n/2, 1 + n/2, E^(2*ArcCoth[a*x])])))/(2*a^2*(2 + n))
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {6721, 107, 141}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x e^{n \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6721

\(\displaystyle -\int \left (1-\frac {1}{a x}\right )^{-n/2} \left (1+\frac {1}{a x}\right )^{n/2} x^3d\frac {1}{x}\)

\(\Big \downarrow \) 107

\(\displaystyle \frac {1}{2} x^2 \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}}-\frac {n \int \left (1-\frac {1}{a x}\right )^{-n/2} \left (1+\frac {1}{a x}\right )^{n/2} x^2d\frac {1}{x}}{2 a}\)

\(\Big \downarrow \) 141

\(\displaystyle \frac {2 n \left (\frac {1}{a x}+1\right )^{\frac {n-2}{2}} \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \operatorname {Hypergeometric2F1}\left (2,1-\frac {n}{2},2-\frac {n}{2},\frac {a-\frac {1}{x}}{a+\frac {1}{x}}\right )}{a^2 (2-n)}+\frac {1}{2} x^2 \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}}\)

Input:

Int[E^(n*ArcCoth[a*x])*x,x]
 

Output:

((1 - 1/(a*x))^(1 - n/2)*(1 + 1/(a*x))^((2 + n)/2)*x^2)/2 + (2*n*(1 - 1/(a 
*x))^(1 - n/2)*(1 + 1/(a*x))^((-2 + n)/2)*Hypergeometric2F1[2, 1 - n/2, 2 
- n/2, (a - x^(-1))/(a + x^(-1))])/(a^2*(2 - n))
 

Defintions of rubi rules used

rule 107
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[(a*d*f*(m + 1) + b*c*f*(n + 
 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 
 1)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x 
] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || SumSimplerQ[m, 1])
 

rule 141
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/((m + 1)*(b*e - a*f)^( 
n + 1)*(e + f*x)^(m + 1)))*Hypergeometric2F1[m + 1, -n, m + 2, (-(d*e - c*f 
))*((a + b*x)/((b*c - a*d)*(e + f*x)))], x] /; FreeQ[{a, b, c, d, e, f, m, 
p}, x] && EqQ[m + n + p + 2, 0] && ILtQ[n, 0] && (SumSimplerQ[m, 1] ||  !Su 
mSimplerQ[p, 1]) &&  !ILtQ[m, 0]
 

rule 6721
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x 
/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && 
!IntegerQ[n] && IntegerQ[m]
 
Maple [F]

\[\int {\mathrm e}^{n \,\operatorname {arccoth}\left (a x \right )} x d x\]

Input:

int(exp(n*arccoth(a*x))*x,x)
 

Output:

int(exp(n*arccoth(a*x))*x,x)
 

Fricas [F]

\[ \int e^{n \coth ^{-1}(a x)} x \, dx=\int { x \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \] Input:

integrate(exp(n*arccoth(a*x))*x,x, algorithm="fricas")
 

Output:

integral(x*((a*x + 1)/(a*x - 1))^(1/2*n), x)
 

Sympy [F]

\[ \int e^{n \coth ^{-1}(a x)} x \, dx=\int x e^{n \operatorname {acoth}{\left (a x \right )}}\, dx \] Input:

integrate(exp(n*acoth(a*x))*x,x)
 

Output:

Integral(x*exp(n*acoth(a*x)), x)
 

Maxima [F]

\[ \int e^{n \coth ^{-1}(a x)} x \, dx=\int { x \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \] Input:

integrate(exp(n*arccoth(a*x))*x,x, algorithm="maxima")
 

Output:

integrate(x*((a*x + 1)/(a*x - 1))^(1/2*n), x)
 

Giac [F]

\[ \int e^{n \coth ^{-1}(a x)} x \, dx=\int { x \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \] Input:

integrate(exp(n*arccoth(a*x))*x,x, algorithm="giac")
 

Output:

integrate(x*((a*x + 1)/(a*x - 1))^(1/2*n), x)
 

Mupad [F(-1)]

Timed out. \[ \int e^{n \coth ^{-1}(a x)} x \, dx=\int x\,{\mathrm {e}}^{n\,\mathrm {acoth}\left (a\,x\right )} \,d x \] Input:

int(x*exp(n*acoth(a*x)),x)
 

Output:

int(x*exp(n*acoth(a*x)), x)
 

Reduce [F]

\[ \int e^{n \coth ^{-1}(a x)} x \, dx=\int e^{\mathit {acoth} \left (a x \right ) n} x d x \] Input:

int(exp(n*acoth(a*x))*x,x)
 

Output:

int(e**(acoth(a*x)*n)*x,x)