\(\int e^{n \coth ^{-1}(a x)} (c-a c x)^p \, dx\) [283]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 104 \[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^p \, dx=\frac {\left (\frac {a-\frac {1}{x}}{a+\frac {1}{x}}\right )^{\frac {1}{2} (n-2 p)} \left (1-\frac {1}{a x}\right )^{-n/2} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x (c-a c x)^p \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (n-2 p),-1-p,-p,\frac {2}{\left (a+\frac {1}{x}\right ) x}\right )}{1+p} \] Output:

((a-1/x)/(a+1/x))^(1/2*n-p)*(1+1/a/x)^(1+1/2*n)*x*(-a*c*x+c)^p*hypergeom([ 
-1-p, 1/2*n-p],[-p],2/(a+1/x)/x)/(p+1)/((1-1/a/x)^(1/2*n))
 

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.00 \[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^p \, dx=\frac {\left (1-\frac {1}{a x}\right )^{-n/2} \left (1+\frac {1}{a x}\right )^{n/2} \left (\frac {-1+a x}{1+a x}\right )^{\frac {1}{2} (n-2 p)} (1+a x) (c-a c x)^p \operatorname {Hypergeometric2F1}\left (-1-p,\frac {n}{2}-p,-p,\frac {2}{1+a x}\right )}{a (1+p)} \] Input:

Integrate[E^(n*ArcCoth[a*x])*(c - a*c*x)^p,x]
 

Output:

((1 + 1/(a*x))^(n/2)*((-1 + a*x)/(1 + a*x))^((n - 2*p)/2)*(1 + a*x)*(c - a 
*c*x)^p*Hypergeometric2F1[-1 - p, n/2 - p, -p, 2/(1 + a*x)])/(a*(1 + p)*(1 
 - 1/(a*x))^(n/2))
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6727, 142}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c-a c x)^p e^{n \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6727

\(\displaystyle \left (\frac {1}{x}\right )^p \left (-\left (1-\frac {1}{a x}\right )^{-p}\right ) (c-a c x)^p \int \left (1-\frac {1}{a x}\right )^{p-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{n/2} \left (\frac {1}{x}\right )^{-p-2}d\frac {1}{x}\)

\(\Big \downarrow \) 142

\(\displaystyle \frac {x \left (1-\frac {1}{a x}\right )^{-n/2} \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} (c-a c x)^p \left (\frac {a-\frac {1}{x}}{a+\frac {1}{x}}\right )^{\frac {1}{2} (n-2 p)} \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (n-2 p),-p-1,-p,\frac {2}{\left (a+\frac {1}{x}\right ) x}\right )}{p+1}\)

Input:

Int[E^(n*ArcCoth[a*x])*(c - a*c*x)^p,x]
 

Output:

(((a - x^(-1))/(a + x^(-1)))^((n - 2*p)/2)*(1 + 1/(a*x))^((2 + n)/2)*x*(c 
- a*c*x)^p*Hypergeometric2F1[(n - 2*p)/2, -1 - p, -p, 2/((a + x^(-1))*x)]) 
/((1 + p)*(1 - 1/(a*x))^(n/2))
 

Defintions of rubi rules used

rule 142
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((b*e 
 - a*f)*(m + 1)))*Hypergeometric2F1[m + 1, -n, m + 2, (-(d*e - c*f))*((a + 
b*x)/((b*c - a*d)*(e + f*x)))])/((b*e - a*f)*((c + d*x)/((b*c - a*d)*(e + f 
*x))))^n, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[m + n + p + 2, 
 0] &&  !IntegerQ[n]
 

rule 6727
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Si 
mp[(-(1/x)^p)*((c + d*x)^p/(1 + c/(d*x))^p)   Subst[Int[((1 + c*(x/d))^p*(( 
1 + x/a)^(n/2)/x^(p + 2)))/(1 - x/a)^(n/2), x], x, 1/x], x] /; FreeQ[{a, c, 
 d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !IntegerQ[p]
 
Maple [F]

\[\int {\mathrm e}^{n \,\operatorname {arccoth}\left (a x \right )} \left (-a c x +c \right )^{p}d x\]

Input:

int(exp(n*arccoth(a*x))*(-a*c*x+c)^p,x)
 

Output:

int(exp(n*arccoth(a*x))*(-a*c*x+c)^p,x)
 

Fricas [F]

\[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^p \, dx=\int { {\left (-a c x + c\right )}^{p} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \] Input:

integrate(exp(n*arccoth(a*x))*(-a*c*x+c)^p,x, algorithm="fricas")
 

Output:

integral((-a*c*x + c)^p*((a*x + 1)/(a*x - 1))^(1/2*n), x)
 

Sympy [F]

\[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^p \, dx=\int \left (- c \left (a x - 1\right )\right )^{p} e^{n \operatorname {acoth}{\left (a x \right )}}\, dx \] Input:

integrate(exp(n*acoth(a*x))*(-a*c*x+c)**p,x)
 

Output:

Integral((-c*(a*x - 1))**p*exp(n*acoth(a*x)), x)
 

Maxima [F]

\[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^p \, dx=\int { {\left (-a c x + c\right )}^{p} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \] Input:

integrate(exp(n*arccoth(a*x))*(-a*c*x+c)^p,x, algorithm="maxima")
 

Output:

integrate((-a*c*x + c)^p*((a*x + 1)/(a*x - 1))^(1/2*n), x)
 

Giac [F]

\[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^p \, dx=\int { {\left (-a c x + c\right )}^{p} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \] Input:

integrate(exp(n*arccoth(a*x))*(-a*c*x+c)^p,x, algorithm="giac")
 

Output:

integrate((-a*c*x + c)^p*((a*x + 1)/(a*x - 1))^(1/2*n), x)
 

Mupad [F(-1)]

Timed out. \[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^p \, dx=\int {\mathrm {e}}^{n\,\mathrm {acoth}\left (a\,x\right )}\,{\left (c-a\,c\,x\right )}^p \,d x \] Input:

int(exp(n*acoth(a*x))*(c - a*c*x)^p,x)
 

Output:

int(exp(n*acoth(a*x))*(c - a*c*x)^p, x)
 

Reduce [F]

\[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^p \, dx=\int e^{\mathit {acoth} \left (a x \right ) n} \left (-a c x +c \right )^{p}d x \] Input:

int(exp(n*acoth(a*x))*(-a*c*x+c)^p,x)
 

Output:

int(e**(acoth(a*x)*n)*( - a*c*x + c)**p,x)