\(\int e^{\coth ^{-1}(a x)} (c-\frac {c}{a x})^3 \, dx\) [395]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 88 \[ \int e^{\coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^3 \, dx=\frac {c^3 \sqrt {1-\frac {1}{a^2 x^2}} \left (4 a+\frac {1}{x}\right )}{2 a^2}+c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2} x+\frac {c^3 \csc ^{-1}(a x)}{2 a}-\frac {2 c^3 \text {arctanh}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a} \] Output:

1/2*c^3*(1-1/a^2/x^2)^(1/2)*(4*a+1/x)/a^2+c^3*(1-1/a^2/x^2)^(3/2)*x+1/2*c^ 
3*arccsc(a*x)/a-2*c^3*arctanh((1-1/a^2/x^2)^(1/2))/a
 

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.90 \[ \int e^{\coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^3 \, dx=\frac {c^3 \left (1-4 a x-3 a^2 x^2+4 a^3 x^3+2 a^4 x^4+2 a^3 \sqrt {1-\frac {1}{a^2 x^2}} x^3 \arcsin \left (\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {2}}\right )+2 a^3 \sqrt {1-\frac {1}{a^2 x^2}} x^3 \arcsin \left (\frac {1}{a x}\right )-4 a^3 \sqrt {1-\frac {1}{a^2 x^2}} x^3 \text {arctanh}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )\right )}{2 a^4 \sqrt {1-\frac {1}{a^2 x^2}} x^3} \] Input:

Integrate[E^ArcCoth[a*x]*(c - c/(a*x))^3,x]
 

Output:

(c^3*(1 - 4*a*x - 3*a^2*x^2 + 4*a^3*x^3 + 2*a^4*x^4 + 2*a^3*Sqrt[1 - 1/(a^ 
2*x^2)]*x^3*ArcSin[Sqrt[1 - 1/(a*x)]/Sqrt[2]] + 2*a^3*Sqrt[1 - 1/(a^2*x^2) 
]*x^3*ArcSin[1/(a*x)] - 4*a^3*Sqrt[1 - 1/(a^2*x^2)]*x^3*ArcTanh[Sqrt[1 - 1 
/(a^2*x^2)]]))/(2*a^4*Sqrt[1 - 1/(a^2*x^2)]*x^3)
 

Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {6731, 27, 540, 535, 538, 223, 243, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (c-\frac {c}{a x}\right )^3 e^{\coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6731

\(\displaystyle -c \int \frac {c^2 \sqrt {1-\frac {1}{a^2 x^2}} \left (a-\frac {1}{x}\right )^2 x^2}{a^2}d\frac {1}{x}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {c^3 \int \sqrt {1-\frac {1}{a^2 x^2}} \left (a-\frac {1}{x}\right )^2 x^2d\frac {1}{x}}{a^2}\)

\(\Big \downarrow \) 540

\(\displaystyle -\frac {c^3 \left (a^2 x \left (-\left (1-\frac {1}{a^2 x^2}\right )^{3/2}\right )-\int \sqrt {1-\frac {1}{a^2 x^2}} \left (2 a+\frac {1}{x}\right ) xd\frac {1}{x}\right )}{a^2}\)

\(\Big \downarrow \) 535

\(\displaystyle -\frac {c^3 \left (-\frac {1}{2} \int \frac {\left (4 a+\frac {1}{x}\right ) x}{\sqrt {1-\frac {1}{a^2 x^2}}}d\frac {1}{x}+a^2 x \left (-\left (1-\frac {1}{a^2 x^2}\right )^{3/2}\right )-\frac {1}{2} \sqrt {1-\frac {1}{a^2 x^2}} \left (4 a+\frac {1}{x}\right )\right )}{a^2}\)

\(\Big \downarrow \) 538

\(\displaystyle -\frac {c^3 \left (\frac {1}{2} \left (-\int \frac {1}{\sqrt {1-\frac {1}{a^2 x^2}}}d\frac {1}{x}-4 a \int \frac {x}{\sqrt {1-\frac {1}{a^2 x^2}}}d\frac {1}{x}\right )+a^2 x \left (-\left (1-\frac {1}{a^2 x^2}\right )^{3/2}\right )-\frac {1}{2} \sqrt {1-\frac {1}{a^2 x^2}} \left (4 a+\frac {1}{x}\right )\right )}{a^2}\)

\(\Big \downarrow \) 223

\(\displaystyle -\frac {c^3 \left (\frac {1}{2} \left (-4 a \int \frac {x}{\sqrt {1-\frac {1}{a^2 x^2}}}d\frac {1}{x}-a \arcsin \left (\frac {1}{a x}\right )\right )+a^2 x \left (-\left (1-\frac {1}{a^2 x^2}\right )^{3/2}\right )-\frac {1}{2} \sqrt {1-\frac {1}{a^2 x^2}} \left (4 a+\frac {1}{x}\right )\right )}{a^2}\)

\(\Big \downarrow \) 243

\(\displaystyle -\frac {c^3 \left (\frac {1}{2} \left (-2 a \int \frac {x}{\sqrt {1-\frac {1}{a^2 x^2}}}d\frac {1}{x^2}-a \arcsin \left (\frac {1}{a x}\right )\right )+a^2 x \left (-\left (1-\frac {1}{a^2 x^2}\right )^{3/2}\right )-\frac {1}{2} \sqrt {1-\frac {1}{a^2 x^2}} \left (4 a+\frac {1}{x}\right )\right )}{a^2}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {c^3 \left (\frac {1}{2} \left (4 a^3 \int \frac {1}{a^2-a^2 \sqrt {1-\frac {1}{a^2 x^2}}}d\sqrt {1-\frac {1}{a^2 x^2}}-a \arcsin \left (\frac {1}{a x}\right )\right )+a^2 x \left (-\left (1-\frac {1}{a^2 x^2}\right )^{3/2}\right )-\frac {1}{2} \sqrt {1-\frac {1}{a^2 x^2}} \left (4 a+\frac {1}{x}\right )\right )}{a^2}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {c^3 \left (\frac {1}{2} \left (4 a \text {arctanh}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )-a \arcsin \left (\frac {1}{a x}\right )\right )+a^2 x \left (-\left (1-\frac {1}{a^2 x^2}\right )^{3/2}\right )-\frac {1}{2} \sqrt {1-\frac {1}{a^2 x^2}} \left (4 a+\frac {1}{x}\right )\right )}{a^2}\)

Input:

Int[E^ArcCoth[a*x]*(c - c/(a*x))^3,x]
 

Output:

-((c^3*(-1/2*(Sqrt[1 - 1/(a^2*x^2)]*(4*a + x^(-1))) - a^2*(1 - 1/(a^2*x^2) 
)^(3/2)*x + (-(a*ArcSin[1/(a*x)]) + 4*a*ArcTanh[Sqrt[1 - 1/(a^2*x^2)]])/2) 
)/a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 535
Int[(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_))/(x_), x_Symbol] :> Sim 
p[(c*(2*p + 1) + 2*d*p*x)*((a + b*x^2)^p/(2*p*(2*p + 1))), x] + Simp[a/(2*p 
 + 1)   Int[(c*(2*p + 1) + 2*d*p*x)*((a + b*x^2)^(p - 1)/x), x], x] /; Free 
Q[{a, b, c, d}, x] && GtQ[p, 0] && IntegerQ[2*p]
 

rule 538
Int[((c_) + (d_.)*(x_))/((x_)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp 
[c   Int[1/(x*Sqrt[a + b*x^2]), x], x] + Simp[d   Int[1/Sqrt[a + b*x^2], x] 
, x] /; FreeQ[{a, b, c, d}, x]
 

rule 540
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol 
] :> With[{Qx = PolynomialQuotient[(c + d*x)^n, x, x], R = PolynomialRemain 
der[(c + d*x)^n, x, x]}, Simp[R*x^(m + 1)*((a + b*x^2)^(p + 1)/(a*(m + 1))) 
, x] + Simp[1/(a*(m + 1))   Int[x^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*(m + 
1)*Qx - b*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, p}, x] && IG 
tQ[n, 1] && ILtQ[m, -1] && GtQ[p, -1] && IntegerQ[2*p]
 

rule 6731
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> S 
imp[-c^n   Subst[Int[(c + d*x)^(p - n)*((1 - x^2/a^2)^(n/2)/x^2), x], x, 1/ 
x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)/2] 
&& IntegerQ[2*p]
 
Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.59

method result size
risch \(\frac {\left (a x -1\right ) \left (2 a^{2} x^{2}+4 a x -1\right ) c^{3}}{2 x^{2} a^{3} \sqrt {\frac {a x -1}{a x +1}}}+\frac {\left (\frac {a^{2} \arctan \left (\frac {1}{\sqrt {a^{2} x^{2}-1}}\right )}{2}-\frac {2 a^{3} \ln \left (\frac {a^{2} x}{\sqrt {a^{2}}}+\sqrt {a^{2} x^{2}-1}\right )}{\sqrt {a^{2}}}\right ) c^{3} \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{a^{3} \sqrt {\frac {a x -1}{a x +1}}\, \left (a x +1\right )}\) \(140\)
default \(-\frac {\left (a x -1\right ) c^{3} \left (-4 \sqrt {a^{2}}\, \sqrt {a^{2} x^{2}-1}\, a^{3} x^{3}+4 \sqrt {a^{2}}\, \left (a^{2} x^{2}-1\right )^{\frac {3}{2}} a x -\sqrt {a^{2}}\, \sqrt {a^{2} x^{2}-1}\, a^{2} x^{2}-a^{2} \sqrt {a^{2}}\, x^{2} \arctan \left (\frac {1}{\sqrt {a^{2} x^{2}-1}}\right )+4 \ln \left (\frac {a^{2} x +\sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) a^{3} x^{2}-\left (a^{2} x^{2}-1\right )^{\frac {3}{2}} \sqrt {a^{2}}\right )}{2 \sqrt {\frac {a x -1}{a x +1}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, a^{3} x^{2} \sqrt {a^{2}}}\) \(200\)

Input:

int(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^3,x,method=_RETURNVERBOSE)
 

Output:

1/2*(a*x-1)*(2*a^2*x^2+4*a*x-1)/x^2*c^3/a^3/((a*x-1)/(a*x+1))^(1/2)+(1/2*a 
^2*arctan(1/(a^2*x^2-1)^(1/2))-2*a^3*ln(a^2*x/(a^2)^(1/2)+(a^2*x^2-1)^(1/2 
))/(a^2)^(1/2))*c^3/a^3/((a*x-1)/(a*x+1))^(1/2)*((a*x-1)*(a*x+1))^(1/2)/(a 
*x+1)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.66 \[ \int e^{\coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^3 \, dx=-\frac {2 \, a^{2} c^{3} x^{2} \arctan \left (\sqrt {\frac {a x - 1}{a x + 1}}\right ) + 4 \, a^{2} c^{3} x^{2} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - 4 \, a^{2} c^{3} x^{2} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right ) - {\left (2 \, a^{3} c^{3} x^{3} + 6 \, a^{2} c^{3} x^{2} + 3 \, a c^{3} x - c^{3}\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{2 \, a^{3} x^{2}} \] Input:

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^3,x, algorithm="fricas")
 

Output:

-1/2*(2*a^2*c^3*x^2*arctan(sqrt((a*x - 1)/(a*x + 1))) + 4*a^2*c^3*x^2*log( 
sqrt((a*x - 1)/(a*x + 1)) + 1) - 4*a^2*c^3*x^2*log(sqrt((a*x - 1)/(a*x + 1 
)) - 1) - (2*a^3*c^3*x^3 + 6*a^2*c^3*x^2 + 3*a*c^3*x - c^3)*sqrt((a*x - 1) 
/(a*x + 1)))/(a^3*x^2)
 

Sympy [F]

\[ \int e^{\coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^3 \, dx=\frac {c^{3} \left (\int \frac {a^{3}}{\sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}\, dx + \int \left (- \frac {1}{x^{3} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}\right )\, dx + \int \frac {3 a}{x^{2} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}\, dx + \int \left (- \frac {3 a^{2}}{x \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}\right )\, dx\right )}{a^{3}} \] Input:

integrate(1/((a*x-1)/(a*x+1))**(1/2)*(c-c/a/x)**3,x)
 

Output:

c**3*(Integral(a**3/sqrt(a*x/(a*x + 1) - 1/(a*x + 1)), x) + Integral(-1/(x 
**3*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))), x) + Integral(3*a/(x**2*sqrt(a*x/( 
a*x + 1) - 1/(a*x + 1))), x) + Integral(-3*a**2/(x*sqrt(a*x/(a*x + 1) - 1/ 
(a*x + 1))), x))/a**3
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 201 vs. \(2 (78) = 156\).

Time = 0.11 (sec) , antiderivative size = 201, normalized size of antiderivative = 2.28 \[ \int e^{\coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^3 \, dx=-{\left (\frac {c^{3} \arctan \left (\sqrt {\frac {a x - 1}{a x + 1}}\right )}{a^{2}} + \frac {2 \, c^{3} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac {2 \, c^{3} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2}} + \frac {3 \, c^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{2}} - 6 \, c^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}} - 5 \, c^{3} \sqrt {\frac {a x - 1}{a x + 1}}}{\frac {{\left (a x - 1\right )} a^{2}}{a x + 1} - \frac {{\left (a x - 1\right )}^{2} a^{2}}{{\left (a x + 1\right )}^{2}} - \frac {{\left (a x - 1\right )}^{3} a^{2}}{{\left (a x + 1\right )}^{3}} + a^{2}}\right )} a \] Input:

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^3,x, algorithm="maxima")
 

Output:

-(c^3*arctan(sqrt((a*x - 1)/(a*x + 1)))/a^2 + 2*c^3*log(sqrt((a*x - 1)/(a* 
x + 1)) + 1)/a^2 - 2*c^3*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2 + (3*c^3*( 
(a*x - 1)/(a*x + 1))^(5/2) - 6*c^3*((a*x - 1)/(a*x + 1))^(3/2) - 5*c^3*sqr 
t((a*x - 1)/(a*x + 1)))/((a*x - 1)*a^2/(a*x + 1) - (a*x - 1)^2*a^2/(a*x + 
1)^2 - (a*x - 1)^3*a^2/(a*x + 1)^3 + a^2))*a
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 221 vs. \(2 (78) = 156\).

Time = 0.14 (sec) , antiderivative size = 221, normalized size of antiderivative = 2.51 \[ \int e^{\coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^3 \, dx=-\frac {c^{3} \arctan \left (-x {\left | a \right |} + \sqrt {a^{2} x^{2} - 1}\right )}{a \mathrm {sgn}\left (a x + 1\right )} + \frac {2 \, c^{3} \log \left ({\left | -x {\left | a \right |} + \sqrt {a^{2} x^{2} - 1} \right |}\right )}{{\left | a \right |} \mathrm {sgn}\left (a x + 1\right )} + \frac {\sqrt {a^{2} x^{2} - 1} c^{3}}{a \mathrm {sgn}\left (a x + 1\right )} + \frac {{\left (x {\left | a \right |} - \sqrt {a^{2} x^{2} - 1}\right )}^{3} c^{3} {\left | a \right |} + 4 \, {\left (x {\left | a \right |} - \sqrt {a^{2} x^{2} - 1}\right )}^{2} a c^{3} - {\left (x {\left | a \right |} - \sqrt {a^{2} x^{2} - 1}\right )} c^{3} {\left | a \right |} + 4 \, a c^{3}}{{\left ({\left (x {\left | a \right |} - \sqrt {a^{2} x^{2} - 1}\right )}^{2} + 1\right )}^{2} a {\left | a \right |} \mathrm {sgn}\left (a x + 1\right )} \] Input:

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^3,x, algorithm="giac")
 

Output:

-c^3*arctan(-x*abs(a) + sqrt(a^2*x^2 - 1))/(a*sgn(a*x + 1)) + 2*c^3*log(ab 
s(-x*abs(a) + sqrt(a^2*x^2 - 1)))/(abs(a)*sgn(a*x + 1)) + sqrt(a^2*x^2 - 1 
)*c^3/(a*sgn(a*x + 1)) + ((x*abs(a) - sqrt(a^2*x^2 - 1))^3*c^3*abs(a) + 4* 
(x*abs(a) - sqrt(a^2*x^2 - 1))^2*a*c^3 - (x*abs(a) - sqrt(a^2*x^2 - 1))*c^ 
3*abs(a) + 4*a*c^3)/(((x*abs(a) - sqrt(a^2*x^2 - 1))^2 + 1)^2*a*abs(a)*sgn 
(a*x + 1))
 

Mupad [B] (verification not implemented)

Time = 13.62 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.85 \[ \int e^{\coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^3 \, dx=\frac {5\,c^3\,\sqrt {\frac {a\,x-1}{a\,x+1}}+6\,c^3\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}-3\,c^3\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{5/2}}{a+\frac {a\,\left (a\,x-1\right )}{a\,x+1}-\frac {a\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}-\frac {a\,{\left (a\,x-1\right )}^3}{{\left (a\,x+1\right )}^3}}-\frac {c^3\,\mathrm {atan}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a}-\frac {4\,c^3\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a} \] Input:

int((c - c/(a*x))^3/((a*x - 1)/(a*x + 1))^(1/2),x)
 

Output:

(5*c^3*((a*x - 1)/(a*x + 1))^(1/2) + 6*c^3*((a*x - 1)/(a*x + 1))^(3/2) - 3 
*c^3*((a*x - 1)/(a*x + 1))^(5/2))/(a + (a*(a*x - 1))/(a*x + 1) - (a*(a*x - 
 1)^2)/(a*x + 1)^2 - (a*(a*x - 1)^3)/(a*x + 1)^3) - (c^3*atan(((a*x - 1)/( 
a*x + 1))^(1/2)))/a - (4*c^3*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/a
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.53 \[ \int e^{\coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^3 \, dx=\frac {c^{3} \left (-2 \mathit {atan} \left (\sqrt {a x -1}+\sqrt {a x +1}-1\right ) a^{2} x^{2}+2 \mathit {atan} \left (\sqrt {a x -1}+\sqrt {a x +1}+1\right ) a^{2} x^{2}+2 \sqrt {a x +1}\, \sqrt {a x -1}\, a^{2} x^{2}+4 \sqrt {a x +1}\, \sqrt {a x -1}\, a x -\sqrt {a x +1}\, \sqrt {a x -1}-8 \,\mathrm {log}\left (\frac {\sqrt {a x -1}+\sqrt {a x +1}}{\sqrt {2}}\right ) a^{2} x^{2}\right )}{2 a^{3} x^{2}} \] Input:

int(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^3,x)
 

Output:

(c**3*( - 2*atan(sqrt(a*x - 1) + sqrt(a*x + 1) - 1)*a**2*x**2 + 2*atan(sqr 
t(a*x - 1) + sqrt(a*x + 1) + 1)*a**2*x**2 + 2*sqrt(a*x + 1)*sqrt(a*x - 1)* 
a**2*x**2 + 4*sqrt(a*x + 1)*sqrt(a*x - 1)*a*x - sqrt(a*x + 1)*sqrt(a*x - 1 
) - 8*log((sqrt(a*x - 1) + sqrt(a*x + 1))/sqrt(2))*a**2*x**2))/(2*a**3*x** 
2)