\(\int \frac {e^{-\coth ^{-1}(a x)}}{(c-\frac {c}{a x})^{3/2}} \, dx\) [483]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 136 \[ \int \frac {e^{-\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{3/2}} \, dx=\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c \sqrt {c-\frac {c}{a x}}}+\frac {\text {arctanh}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}\right )}{a c^{3/2}}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {2} \sqrt {c-\frac {c}{a x}}}\right )}{a c^{3/2}} \] Output:

(1-1/a^2/x^2)^(1/2)*x/c/(c-c/a/x)^(1/2)+arctanh(c^(1/2)*(1-1/a^2/x^2)^(1/2 
)/(c-c/a/x)^(1/2))/a/c^(3/2)-arctanh(1/2*c^(1/2)*(1-1/a^2/x^2)^(1/2)*2^(1/ 
2)/(c-c/a/x)^(1/2))*2^(1/2)/a/c^(3/2)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.67 \[ \int \frac {e^{-\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{3/2}} \, dx=\frac {\left (1-\frac {1}{a x}\right )^{3/2} \left (a \sqrt {1+\frac {1}{a x}} x+\text {arctanh}\left (\sqrt {1+\frac {1}{a x}}\right )-\sqrt {2} \text {arctanh}\left (\frac {\sqrt {1+\frac {1}{a x}}}{\sqrt {2}}\right )\right )}{a \left (c-\frac {c}{a x}\right )^{3/2}} \] Input:

Integrate[1/(E^ArcCoth[a*x]*(c - c/(a*x))^(3/2)),x]
 

Output:

((1 - 1/(a*x))^(3/2)*(a*Sqrt[1 + 1/(a*x)]*x + ArcTanh[Sqrt[1 + 1/(a*x)]] - 
 Sqrt[2]*ArcTanh[Sqrt[1 + 1/(a*x)]/Sqrt[2]]))/(a*(c - c/(a*x))^(3/2))
 

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.82, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {6731, 585, 27, 114, 27, 35, 94, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{-\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 6731

\(\displaystyle -\frac {\int \frac {x^2}{\sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}}}d\frac {1}{x}}{c}\)

\(\Big \downarrow \) 585

\(\displaystyle -\frac {\sqrt {1-\frac {1}{a x}} \int \frac {a x^2}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}}}d\frac {1}{x}}{c \sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \sqrt {1-\frac {1}{a x}} \int \frac {x^2}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}}}d\frac {1}{x}}{c \sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 114

\(\displaystyle -\frac {a \sqrt {1-\frac {1}{a x}} \left (-\frac {\int -\frac {\left (a+\frac {1}{x}\right ) x}{2 a \left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}}}d\frac {1}{x}}{a}-\frac {x \sqrt {\frac {1}{a x}+1}}{a}\right )}{c \sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \sqrt {1-\frac {1}{a x}} \left (\frac {\int \frac {\left (a+\frac {1}{x}\right ) x}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}}}d\frac {1}{x}}{2 a^2}-\frac {x \sqrt {\frac {1}{a x}+1}}{a}\right )}{c \sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 35

\(\displaystyle -\frac {a \sqrt {1-\frac {1}{a x}} \left (\frac {\int \frac {\sqrt {1+\frac {1}{a x}} x}{a-\frac {1}{x}}d\frac {1}{x}}{2 a}-\frac {x \sqrt {\frac {1}{a x}+1}}{a}\right )}{c \sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 94

\(\displaystyle -\frac {a \sqrt {1-\frac {1}{a x}} \left (\frac {\frac {2 \int \frac {1}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}}}d\frac {1}{x}}{a}+\frac {\int \frac {x}{\sqrt {1+\frac {1}{a x}}}d\frac {1}{x}}{a}}{2 a}-\frac {x \sqrt {\frac {1}{a x}+1}}{a}\right )}{c \sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {a \sqrt {1-\frac {1}{a x}} \left (\frac {4 \int \frac {1}{2 a-\frac {a}{x^2}}d\sqrt {1+\frac {1}{a x}}+2 \int \frac {1}{\frac {a}{x^2}-a}d\sqrt {1+\frac {1}{a x}}}{2 a}-\frac {x \sqrt {\frac {1}{a x}+1}}{a}\right )}{c \sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {a \sqrt {1-\frac {1}{a x}} \left (\frac {\frac {2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {\frac {1}{a x}+1}}{\sqrt {2}}\right )}{a}-\frac {2 \text {arctanh}\left (\sqrt {\frac {1}{a x}+1}\right )}{a}}{2 a}-\frac {x \sqrt {\frac {1}{a x}+1}}{a}\right )}{c \sqrt {c-\frac {c}{a x}}}\)

Input:

Int[1/(E^ArcCoth[a*x]*(c - c/(a*x))^(3/2)),x]
 

Output:

-((a*Sqrt[1 - 1/(a*x)]*(-((Sqrt[1 + 1/(a*x)]*x)/a) + ((-2*ArcTanh[Sqrt[1 + 
 1/(a*x)]])/a + (2*Sqrt[2]*ArcTanh[Sqrt[1 + 1/(a*x)]/Sqrt[2]])/a)/(2*a)))/ 
(c*Sqrt[c - c/(a*x)]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 35
Int[(u_.)*((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.), x_Symbol] :> 
 Simp[(b/d)^m   Int[u*(c + d*x)^(m + n), x], x] /; FreeQ[{a, b, c, d, m, n} 
, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] &&  !(IntegerQ[n] && SimplerQ[a + 
b*x, c + d*x])
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 94
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), 
x_] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[(e + f*x)^(p - 1)/(a + b*x), x], 
x] - Simp[(d*e - c*f)/(b*c - a*d)   Int[(e + f*x)^(p - 1)/(c + d*x), x], x] 
 /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[0, p, 1]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 585
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_) 
, x_Symbol] :> Simp[a^p*c^IntPart[n]*((c + d*x)^FracPart[n]/(1 + d*(x/c))^F 
racPart[n])   Int[(e*x)^m*(1 - d*(x/c))^p*(1 + d*(x/c))^(n + p), x], x] /; 
FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && GtQ[a, 0]
 

rule 6731
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> S 
imp[-c^n   Subst[Int[(c + d*x)^(p - n)*((1 - x^2/a^2)^(n/2)/x^2), x], x, 1/ 
x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)/2] 
&& IntegerQ[2*p]
 
Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.19

method result size
default \(\frac {\sqrt {\frac {a x -1}{a x +1}}\, \left (a x +1\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, x \left (2 \sqrt {x \left (a x +1\right )}\, a^{\frac {3}{2}} \sqrt {\frac {1}{a}}+\ln \left (\frac {2 \sqrt {x \left (a x +1\right )}\, \sqrt {a}+2 a x +1}{2 \sqrt {a}}\right ) a \sqrt {\frac {1}{a}}-\sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {\frac {1}{a}}\, \sqrt {x \left (a x +1\right )}\, a +3 a x +1}{a x -1}\right ) \sqrt {a}\right )}{2 a^{\frac {3}{2}} c^{2} \left (a x -1\right ) \sqrt {x \left (a x +1\right )}\, \sqrt {\frac {1}{a}}}\) \(162\)
risch \(\frac {\left (a x +1\right ) \sqrt {\frac {a x -1}{a x +1}}}{a c \sqrt {\frac {c \left (a x -1\right )}{a x}}}+\frac {\left (\frac {\ln \left (\frac {\frac {1}{2} a c +a^{2} c x}{\sqrt {a^{2} c}}+\sqrt {a^{2} c \,x^{2}+a c x}\right )}{2 a^{2} \sqrt {a^{2} c}}-\frac {\sqrt {2}\, \ln \left (\frac {4 c +3 \left (x -\frac {1}{a}\right ) a c +2 \sqrt {2}\, \sqrt {c}\, \sqrt {\left (x -\frac {1}{a}\right )^{2} a^{2} c +3 \left (x -\frac {1}{a}\right ) a c +2 c}}{x -\frac {1}{a}}\right )}{2 a^{3} \sqrt {c}}\right ) a \sqrt {\frac {a x -1}{a x +1}}\, \sqrt {\left (a x +1\right ) a c x}}{c x \sqrt {\frac {c \left (a x -1\right )}{a x}}}\) \(218\)

Input:

int(((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/2*((a*x-1)/(a*x+1))^(1/2)*(a*x+1)*(c*(a*x-1)/a/x)^(1/2)*x/a^(3/2)/c^2*(2 
*(x*(a*x+1))^(1/2)*a^(3/2)*(1/a)^(1/2)+ln(1/2*(2*(x*(a*x+1))^(1/2)*a^(1/2) 
+2*a*x+1)/a^(1/2))*a*(1/a)^(1/2)-2^(1/2)*ln((2*2^(1/2)*(1/a)^(1/2)*(x*(a*x 
+1))^(1/2)*a+3*a*x+1)/(a*x-1))*a^(1/2))/(a*x-1)/(x*(a*x+1))^(1/2)/(1/a)^(1 
/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 239 vs. \(2 (113) = 226\).

Time = 0.15 (sec) , antiderivative size = 522, normalized size of antiderivative = 3.84 \[ \int \frac {e^{-\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{3/2}} \, dx=\left [\frac {{\left (a x - 1\right )} \sqrt {c} \log \left (-\frac {8 \, a^{3} c x^{3} - 7 \, a c x + 4 \, {\left (2 \, a^{3} x^{3} + 3 \, a^{2} x^{2} + a x\right )} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}} - c}{a x - 1}\right ) + 4 \, {\left (a^{2} x^{2} + a x\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}} + \frac {\sqrt {2} {\left (a c x - c\right )} \log \left (-\frac {17 \, a^{3} x^{3} - 3 \, a^{2} x^{2} - 13 \, a x - \frac {4 \, \sqrt {2} {\left (3 \, a^{3} x^{3} + 4 \, a^{2} x^{2} + a x\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{\sqrt {c}} - 1}{a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1}\right )}{\sqrt {c}}}{4 \, {\left (a^{2} c^{2} x - a c^{2}\right )}}, \frac {\sqrt {2} {\left (a c x - c\right )} \sqrt {-\frac {1}{c}} \arctan \left (\frac {2 \, \sqrt {2} {\left (a^{2} x^{2} + a x\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {-\frac {1}{c}} \sqrt {\frac {a c x - c}{a x}}}{3 \, a^{2} x^{2} - 2 \, a x - 1}\right ) - {\left (a x - 1\right )} \sqrt {-c} \arctan \left (\frac {2 \, {\left (a^{2} x^{2} + a x\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{2 \, a^{2} c x^{2} - a c x - c}\right ) + 2 \, {\left (a^{2} x^{2} + a x\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{2 \, {\left (a^{2} c^{2} x - a c^{2}\right )}}\right ] \] Input:

integrate(((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^(3/2),x, algorithm="fricas")
 

Output:

[1/4*((a*x - 1)*sqrt(c)*log(-(8*a^3*c*x^3 - 7*a*c*x + 4*(2*a^3*x^3 + 3*a^2 
*x^2 + a*x)*sqrt(c)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x)) - c) 
/(a*x - 1)) + 4*(a^2*x^2 + a*x)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c) 
/(a*x)) + sqrt(2)*(a*c*x - c)*log(-(17*a^3*x^3 - 3*a^2*x^2 - 13*a*x - 4*sq 
rt(2)*(3*a^3*x^3 + 4*a^2*x^2 + a*x)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x 
- c)/(a*x))/sqrt(c) - 1)/(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1))/sqrt(c))/(a^2* 
c^2*x - a*c^2), 1/2*(sqrt(2)*(a*c*x - c)*sqrt(-1/c)*arctan(2*sqrt(2)*(a^2* 
x^2 + a*x)*sqrt((a*x - 1)/(a*x + 1))*sqrt(-1/c)*sqrt((a*c*x - c)/(a*x))/(3 
*a^2*x^2 - 2*a*x - 1)) - (a*x - 1)*sqrt(-c)*arctan(2*(a^2*x^2 + a*x)*sqrt( 
-c)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x))/(2*a^2*c*x^2 - a*c*x 
 - c)) + 2*(a^2*x^2 + a*x)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x 
)))/(a^2*c^2*x - a*c^2)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {e^{-\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(((a*x-1)/(a*x+1))**(1/2)/(c-c/a/x)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {e^{-\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{3/2}} \, dx=\int { \frac {\sqrt {\frac {a x - 1}{a x + 1}}}{{\left (c - \frac {c}{a x}\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^(3/2),x, algorithm="maxima")
 

Output:

integrate(sqrt((a*x - 1)/(a*x + 1))/(c - c/(a*x))^(3/2), x)
 

Giac [F]

\[ \int \frac {e^{-\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{3/2}} \, dx=\int { \frac {\sqrt {\frac {a x - 1}{a x + 1}}}{{\left (c - \frac {c}{a x}\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^(3/2),x, algorithm="giac")
 

Output:

integrate(sqrt((a*x - 1)/(a*x + 1))/(c - c/(a*x))^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{-\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{3/2}} \, dx=\int \frac {\sqrt {\frac {a\,x-1}{a\,x+1}}}{{\left (c-\frac {c}{a\,x}\right )}^{3/2}} \,d x \] Input:

int(((a*x - 1)/(a*x + 1))^(1/2)/(c - c/(a*x))^(3/2),x)
 

Output:

int(((a*x - 1)/(a*x + 1))^(1/2)/(c - c/(a*x))^(3/2), x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.88 \[ \int \frac {e^{-\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{3/2}} \, dx=\frac {\sqrt {c}\, \left (2 \sqrt {x}\, \sqrt {a}\, \sqrt {a x +1}+\sqrt {2}\, \mathrm {log}\left (\sqrt {a x +1}+\sqrt {x}\, \sqrt {a}-\sqrt {2}-1\right )-\sqrt {2}\, \mathrm {log}\left (\sqrt {a x +1}+\sqrt {x}\, \sqrt {a}-\sqrt {2}+1\right )-\sqrt {2}\, \mathrm {log}\left (\sqrt {a x +1}+\sqrt {x}\, \sqrt {a}+\sqrt {2}-1\right )+\sqrt {2}\, \mathrm {log}\left (\sqrt {a x +1}+\sqrt {x}\, \sqrt {a}+\sqrt {2}+1\right )+2 \,\mathrm {log}\left (\sqrt {a x +1}+\sqrt {x}\, \sqrt {a}\right )\right )}{2 a \,c^{2}} \] Input:

int(((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^(3/2),x)
 

Output:

(sqrt(c)*(2*sqrt(x)*sqrt(a)*sqrt(a*x + 1) + sqrt(2)*log(sqrt(a*x + 1) + sq 
rt(x)*sqrt(a) - sqrt(2) - 1) - sqrt(2)*log(sqrt(a*x + 1) + sqrt(x)*sqrt(a) 
 - sqrt(2) + 1) - sqrt(2)*log(sqrt(a*x + 1) + sqrt(x)*sqrt(a) + sqrt(2) - 
1) + sqrt(2)*log(sqrt(a*x + 1) + sqrt(x)*sqrt(a) + sqrt(2) + 1) + 2*log(sq 
rt(a*x + 1) + sqrt(x)*sqrt(a))))/(2*a*c**2)