\(\int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx\) [524]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 129 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\frac {2 c \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}+2 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}\right )-4 \sqrt {2} \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {2} \sqrt {c-\frac {c}{a x}}}\right ) \] Output:

2*c*(1-1/a^2/x^2)^(1/2)/(c-c/a/x)^(1/2)+2*c^(1/2)*arctanh(c^(1/2)*(1-1/a^2 
/x^2)^(1/2)/(c-c/a/x)^(1/2))-4*2^(1/2)*c^(1/2)*arctanh(1/2*c^(1/2)*(1-1/a^ 
2/x^2)^(1/2)*2^(1/2)/(c-c/a/x)^(1/2))
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.06 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.69 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\frac {2 a \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}} x}{-1+a x}-\sqrt {c} \log (1-a x)+2 \sqrt {2} \sqrt {c} \log \left ((-1+a x)^2\right )+\sqrt {c} \log \left (2 a^2 \sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}} x^2+c \left (-1-a x+2 a^2 x^2\right )\right )-2 \sqrt {2} \sqrt {c} \log \left (2 \sqrt {2} a^2 \sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}} x^2+c \left (-1-2 a x+3 a^2 x^2\right )\right ) \] Input:

Integrate[(E^(3*ArcCoth[a*x])*Sqrt[c - c/(a*x)])/x,x]
 

Output:

(2*a*Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)]*x)/(-1 + a*x) - Sqrt[c]*Log[1 
 - a*x] + 2*Sqrt[2]*Sqrt[c]*Log[(-1 + a*x)^2] + Sqrt[c]*Log[2*a^2*Sqrt[c]* 
Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)]*x^2 + c*(-1 - a*x + 2*a^2*x^2)] - 
2*Sqrt[2]*Sqrt[c]*Log[2*Sqrt[2]*a^2*Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - 
 c/(a*x)]*x^2 + c*(-1 - 2*a*x + 3*a^2*x^2)]
 

Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.78, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6733, 585, 27, 95, 25, 27, 174, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c-\frac {c}{a x}} e^{3 \coth ^{-1}(a x)}}{x} \, dx\)

\(\Big \downarrow \) 6733

\(\displaystyle -c^3 \int \frac {\left (1-\frac {1}{a^2 x^2}\right )^{3/2} x}{\left (c-\frac {c}{a x}\right )^{5/2}}d\frac {1}{x}\)

\(\Big \downarrow \) 585

\(\displaystyle -\frac {c \sqrt {1-\frac {1}{a x}} \int \frac {a \left (1+\frac {1}{a x}\right )^{3/2} x}{a-\frac {1}{x}}d\frac {1}{x}}{\sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a c \sqrt {1-\frac {1}{a x}} \int \frac {\left (1+\frac {1}{a x}\right )^{3/2} x}{a-\frac {1}{x}}d\frac {1}{x}}{\sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 95

\(\displaystyle -\frac {a c \sqrt {1-\frac {1}{a x}} \left (-\int -\frac {\left (a+\frac {3}{x}\right ) x}{a \left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}}}d\frac {1}{x}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {a c \sqrt {1-\frac {1}{a x}} \left (\int \frac {\left (a+\frac {3}{x}\right ) x}{a \left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}}}d\frac {1}{x}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a c \sqrt {1-\frac {1}{a x}} \left (\frac {\int \frac {\left (a+\frac {3}{x}\right ) x}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}}}d\frac {1}{x}}{a}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 174

\(\displaystyle -\frac {a c \sqrt {1-\frac {1}{a x}} \left (\frac {4 \int \frac {1}{\left (a-\frac {1}{x}\right ) \sqrt {1+\frac {1}{a x}}}d\frac {1}{x}+\int \frac {x}{\sqrt {1+\frac {1}{a x}}}d\frac {1}{x}}{a}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {a c \sqrt {1-\frac {1}{a x}} \left (\frac {8 a \int \frac {1}{2 a-\frac {a}{x^2}}d\sqrt {1+\frac {1}{a x}}+2 a \int \frac {1}{\frac {a}{x^2}-a}d\sqrt {1+\frac {1}{a x}}}{a}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {c-\frac {c}{a x}}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {a c \sqrt {1-\frac {1}{a x}} \left (\frac {4 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {\frac {1}{a x}+1}}{\sqrt {2}}\right )-2 \text {arctanh}\left (\sqrt {\frac {1}{a x}+1}\right )}{a}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a}\right )}{\sqrt {c-\frac {c}{a x}}}\)

Input:

Int[(E^(3*ArcCoth[a*x])*Sqrt[c - c/(a*x)])/x,x]
 

Output:

-((a*c*Sqrt[1 - 1/(a*x)]*((-2*Sqrt[1 + 1/(a*x)])/a + (-2*ArcTanh[Sqrt[1 + 
1/(a*x)]] + 4*Sqrt[2]*ArcTanh[Sqrt[1 + 1/(a*x)]/Sqrt[2]])/a))/Sqrt[c - c/( 
a*x)])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 95
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), 
x_] :> Simp[f*((e + f*x)^(p - 1)/(b*d*(p - 1))), x] + Simp[1/(b*d)   Int[(b 
*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*((e + f*x)^(p - 2)/((a + 
b*x)*(c + d*x))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 585
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_) 
, x_Symbol] :> Simp[a^p*c^IntPart[n]*((c + d*x)^FracPart[n]/(1 + d*(x/c))^F 
racPart[n])   Int[(e*x)^m*(1 - d*(x/c))^p*(1 + d*(x/c))^(n + p), x], x] /; 
FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && GtQ[a, 0]
 

rule 6733
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_S 
ymbol] :> Simp[-c^n   Subst[Int[(c + d*x)^(p - n)*((1 - x^2/a^2)^(n/2)/x^(m 
 + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && Int 
egerQ[(n - 1)/2] && IntegerQ[m] && IntegerQ[2*p]
 
Maple [A] (verified)

Time = 0.16 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.25

method result size
default \(-\frac {\left (a x -1\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \left (2 \sqrt {a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {\frac {1}{a}}\, \sqrt {x \left (a x +1\right )}\, a +3 a x +1}{a x -1}\right ) x -\ln \left (\frac {2 \sqrt {x \left (a x +1\right )}\, \sqrt {a}+2 a x +1}{2 \sqrt {a}}\right ) \sqrt {\frac {1}{a}}\, a x -2 \sqrt {x \left (a x +1\right )}\, \sqrt {a}\, \sqrt {\frac {1}{a}}\right )}{\left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}} \left (a x +1\right ) \sqrt {x \left (a x +1\right )}\, \sqrt {a}\, \sqrt {\frac {1}{a}}}\) \(161\)
risch \(\frac {2 \sqrt {\frac {c \left (a x -1\right )}{a x}}}{\sqrt {\frac {a x -1}{a x +1}}}+\frac {\left (\frac {a \ln \left (\frac {\frac {1}{2} a c +a^{2} c x}{\sqrt {a^{2} c}}+\sqrt {a^{2} c \,x^{2}+a c x}\right )}{\sqrt {a^{2} c}}-\frac {2 \sqrt {2}\, \ln \left (\frac {4 c +3 \left (x -\frac {1}{a}\right ) a c +2 \sqrt {2}\, \sqrt {c}\, \sqrt {\left (x -\frac {1}{a}\right )^{2} a^{2} c +3 \left (x -\frac {1}{a}\right ) a c +2 c}}{x -\frac {1}{a}}\right )}{\sqrt {c}}\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\left (a x +1\right ) a c x}}{\sqrt {\frac {a x -1}{a x +1}}\, \left (a x +1\right )}\) \(202\)

Input:

int(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2)/x,x,method=_RETURNVERBOSE)
 

Output:

-1/((a*x-1)/(a*x+1))^(3/2)*(a*x-1)/(a*x+1)*(c*(a*x-1)/a/x)^(1/2)*(2*a^(1/2 
)*2^(1/2)*ln((2*2^(1/2)*(1/a)^(1/2)*(x*(a*x+1))^(1/2)*a+3*a*x+1)/(a*x-1))* 
x-ln(1/2*(2*(x*(a*x+1))^(1/2)*a^(1/2)+2*a*x+1)/a^(1/2))*(1/a)^(1/2)*a*x-2* 
(x*(a*x+1))^(1/2)*a^(1/2)*(1/a)^(1/2))/(x*(a*x+1))^(1/2)/a^(1/2)/(1/a)^(1/ 
2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 220 vs. \(2 (106) = 212\).

Time = 0.16 (sec) , antiderivative size = 490, normalized size of antiderivative = 3.80 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\left [\frac {2 \, \sqrt {2} {\left (a x - 1\right )} \sqrt {c} \log \left (-\frac {17 \, a^{3} c x^{3} - 3 \, a^{2} c x^{2} - 13 \, a c x - 4 \, \sqrt {2} {\left (3 \, a^{3} x^{3} + 4 \, a^{2} x^{2} + a x\right )} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}} - c}{a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1}\right ) + {\left (a x - 1\right )} \sqrt {c} \log \left (-\frac {8 \, a^{3} c x^{3} - 7 \, a c x + 4 \, {\left (2 \, a^{3} x^{3} + 3 \, a^{2} x^{2} + a x\right )} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}} - c}{a x - 1}\right ) + 4 \, {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{2 \, {\left (a x - 1\right )}}, \frac {2 \, \sqrt {2} {\left (a x - 1\right )} \sqrt {-c} \arctan \left (\frac {2 \, \sqrt {2} {\left (a^{2} x^{2} + a x\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{3 \, a^{2} c x^{2} - 2 \, a c x - c}\right ) - {\left (a x - 1\right )} \sqrt {-c} \arctan \left (\frac {2 \, {\left (a^{2} x^{2} + a x\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{2 \, a^{2} c x^{2} - a c x - c}\right ) + 2 \, {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{a x - 1}\right ] \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2)/x,x, algorithm="fricas 
")
 

Output:

[1/2*(2*sqrt(2)*(a*x - 1)*sqrt(c)*log(-(17*a^3*c*x^3 - 3*a^2*c*x^2 - 13*a* 
c*x - 4*sqrt(2)*(3*a^3*x^3 + 4*a^2*x^2 + a*x)*sqrt(c)*sqrt((a*x - 1)/(a*x 
+ 1))*sqrt((a*c*x - c)/(a*x)) - c)/(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)) + (a 
*x - 1)*sqrt(c)*log(-(8*a^3*c*x^3 - 7*a*c*x + 4*(2*a^3*x^3 + 3*a^2*x^2 + a 
*x)*sqrt(c)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x)) - c)/(a*x - 
1)) + 4*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x)))/(a*x 
- 1), (2*sqrt(2)*(a*x - 1)*sqrt(-c)*arctan(2*sqrt(2)*(a^2*x^2 + a*x)*sqrt( 
-c)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x))/(3*a^2*c*x^2 - 2*a*c 
*x - c)) - (a*x - 1)*sqrt(-c)*arctan(2*(a^2*x^2 + a*x)*sqrt(-c)*sqrt((a*x 
- 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x))/(2*a^2*c*x^2 - a*c*x - c)) + 2*(a* 
x + 1)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x)))/(a*x - 1)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\text {Timed out} \] Input:

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(c-c/a/x)**(1/2)/x,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\int { \frac {\sqrt {c - \frac {c}{a x}}}{x \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2)/x,x, algorithm="maxima 
")
 

Output:

integrate(sqrt(c - c/(a*x))/(x*((a*x - 1)/(a*x + 1))^(3/2)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2)/x,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\int \frac {\sqrt {c-\frac {c}{a\,x}}}{x\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}} \,d x \] Input:

int((c - c/(a*x))^(1/2)/(x*((a*x - 1)/(a*x + 1))^(3/2)),x)
 

Output:

int((c - c/(a*x))^(1/2)/(x*((a*x - 1)/(a*x + 1))^(3/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.02 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\frac {2 \sqrt {c}\, \left (\sqrt {x}\, \sqrt {a}\, \sqrt {a x +1}+\sqrt {2}\, \mathrm {log}\left (\sqrt {a x +1}+\sqrt {x}\, \sqrt {a}-\sqrt {2}-1\right ) a x -\sqrt {2}\, \mathrm {log}\left (\sqrt {a x +1}+\sqrt {x}\, \sqrt {a}-\sqrt {2}+1\right ) a x -\sqrt {2}\, \mathrm {log}\left (\sqrt {a x +1}+\sqrt {x}\, \sqrt {a}+\sqrt {2}-1\right ) a x +\sqrt {2}\, \mathrm {log}\left (\sqrt {a x +1}+\sqrt {x}\, \sqrt {a}+\sqrt {2}+1\right ) a x +\mathrm {log}\left (\sqrt {a x +1}+\sqrt {x}\, \sqrt {a}\right ) a x +a x \right )}{a x} \] Input:

int(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2)/x,x)
 

Output:

(2*sqrt(c)*(sqrt(x)*sqrt(a)*sqrt(a*x + 1) + sqrt(2)*log(sqrt(a*x + 1) + sq 
rt(x)*sqrt(a) - sqrt(2) - 1)*a*x - sqrt(2)*log(sqrt(a*x + 1) + sqrt(x)*sqr 
t(a) - sqrt(2) + 1)*a*x - sqrt(2)*log(sqrt(a*x + 1) + sqrt(x)*sqrt(a) + sq 
rt(2) - 1)*a*x + sqrt(2)*log(sqrt(a*x + 1) + sqrt(x)*sqrt(a) + sqrt(2) + 1 
)*a*x + log(sqrt(a*x + 1) + sqrt(x)*sqrt(a))*a*x + a*x))/(a*x)