\(\int e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} \, dx\) [539]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 92 \[ \int e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\sqrt {c-\frac {c}{a x}} x-\frac {5 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{a}+\frac {4 \sqrt {2} \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right )}{a} \] Output:

(c-c/a/x)^(1/2)*x-5*c^(1/2)*arctanh((c-c/a/x)^(1/2)/c^(1/2))/a+4*2^(1/2)*c 
^(1/2)*arctanh(1/2*(c-c/a/x)^(1/2)*2^(1/2)/c^(1/2))/a
 

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00 \[ \int e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\sqrt {c-\frac {c}{a x}} x-\frac {5 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{a}+\frac {4 \sqrt {2} \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right )}{a} \] Input:

Integrate[Sqrt[c - c/(a*x)]/E^(2*ArcCoth[a*x]),x]
 

Output:

Sqrt[c - c/(a*x)]*x - (5*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[c]])/a + ( 
4*Sqrt[2]*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt[2]*Sqrt[c])])/a
 

Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.17, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {6717, 6683, 1035, 281, 899, 109, 27, 174, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {c-\frac {c}{a x}} e^{-2 \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6717

\(\displaystyle -\int e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}dx\)

\(\Big \downarrow \) 6683

\(\displaystyle -\int \frac {\sqrt {c-\frac {c}{a x}} (1-a x)}{a x+1}dx\)

\(\Big \downarrow \) 1035

\(\displaystyle -\int \frac {\left (\frac {1}{x}-a\right ) \sqrt {c-\frac {c}{a x}}}{a+\frac {1}{x}}dx\)

\(\Big \downarrow \) 281

\(\displaystyle \frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{3/2}}{a+\frac {1}{x}}dx}{c}\)

\(\Big \downarrow \) 899

\(\displaystyle -\frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{3/2} x^2}{a+\frac {1}{x}}d\frac {1}{x}}{c}\)

\(\Big \downarrow \) 109

\(\displaystyle -\frac {a \left (-\frac {\int \frac {c^2 \left (5 a-\frac {3}{x}\right ) x}{2 a \left (a+\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}}}d\frac {1}{x}}{a}-\frac {c x \sqrt {c-\frac {c}{a x}}}{a}\right )}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \left (-\frac {c^2 \int \frac {\left (5 a-\frac {3}{x}\right ) x}{\left (a+\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}}}d\frac {1}{x}}{2 a^2}-\frac {c x \sqrt {c-\frac {c}{a x}}}{a}\right )}{c}\)

\(\Big \downarrow \) 174

\(\displaystyle -\frac {a \left (-\frac {c^2 \left (5 \int \frac {x}{\sqrt {c-\frac {c}{a x}}}d\frac {1}{x}-8 \int \frac {1}{\left (a+\frac {1}{x}\right ) \sqrt {c-\frac {c}{a x}}}d\frac {1}{x}\right )}{2 a^2}-\frac {c x \sqrt {c-\frac {c}{a x}}}{a}\right )}{c}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {a \left (-\frac {c^2 \left (\frac {16 a \int \frac {1}{2 a-\frac {a}{c x^2}}d\sqrt {c-\frac {c}{a x}}}{c}-\frac {10 a \int \frac {1}{a-\frac {a}{c x^2}}d\sqrt {c-\frac {c}{a x}}}{c}\right )}{2 a^2}-\frac {c x \sqrt {c-\frac {c}{a x}}}{a}\right )}{c}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {a \left (-\frac {c^2 \left (\frac {8 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {2} \sqrt {c}}\right )}{\sqrt {c}}-\frac {10 \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{\sqrt {c}}\right )}{2 a^2}-\frac {c x \sqrt {c-\frac {c}{a x}}}{a}\right )}{c}\)

Input:

Int[Sqrt[c - c/(a*x)]/E^(2*ArcCoth[a*x]),x]
 

Output:

-((a*(-((c*Sqrt[c - c/(a*x)]*x)/a) - (c^2*((-10*ArcTanh[Sqrt[c - c/(a*x)]/ 
Sqrt[c]])/Sqrt[c] + (8*Sqrt[2]*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt[2]*Sqrt[c]) 
])/Sqrt[c]))/(2*a^2)))/c)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 281
Int[(u_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_ 
Symbol] :> Simp[(b/d)^p   Int[u*(c + d*x^n)^(p + q), x], x] /; FreeQ[{a, b, 
 c, d, n, p, q}, x] && EqQ[b*c - a*d, 0] && IntegerQ[p] &&  !(IntegerQ[q] & 
& SimplerQ[a + b*x^n, c + d*x^n])
 

rule 899
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol 
] :> -Subst[Int[(a + b/x^n)^p*((c + d/x^n)^q/x^2), x], x, 1/x] /; FreeQ[{a, 
 b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]
 

rule 1035
Int[((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.))^(p_.)*((e_) 
 + (f_.)*(x_)^(n_.))^(r_.), x_Symbol] :> Int[x^(n*(p + r))*(b + a/x^n)^p*(c 
 + d/x^n)^q*(f + e/x^n)^r, x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && EqQ[ 
mn, -n] && IntegerQ[p] && IntegerQ[r]
 

rule 6683
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] 
:> Int[u*(c + d/x)^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, 
d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !G 
tQ[c, 0]
 

rule 6717
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Simp[(-1)^(n/2)   Int[ 
u*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[a, x] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(167\) vs. \(2(75)=150\).

Time = 0.15 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.83

method result size
risch \(x \sqrt {\frac {c \left (a x -1\right )}{a x}}+\frac {\left (-\frac {5 \ln \left (\frac {-\frac {1}{2} a c +a^{2} c x}{\sqrt {a^{2} c}}+\sqrt {a^{2} c \,x^{2}-a c x}\right )}{2 \sqrt {a^{2} c}}-\frac {2 \sqrt {2}\, \ln \left (\frac {4 c -3 \left (x +\frac {1}{a}\right ) a c +2 \sqrt {2}\, \sqrt {c}\, \sqrt {\left (x +\frac {1}{a}\right )^{2} a^{2} c -3 \left (x +\frac {1}{a}\right ) a c +2 c}}{x +\frac {1}{a}}\right )}{a \sqrt {c}}\right ) \sqrt {c \left (a x -1\right ) a x}\, \sqrt {\frac {c \left (a x -1\right )}{a x}}}{a x -1}\) \(168\)
default \(\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, x \left (4 \sqrt {x \left (a x -1\right )}\, a^{\frac {3}{2}} \sqrt {\frac {1}{a}}-2 \sqrt {a \,x^{2}-x}\, a^{\frac {3}{2}} \sqrt {\frac {1}{a}}+\ln \left (\frac {2 \sqrt {a \,x^{2}-x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a \sqrt {\frac {1}{a}}-4 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {\frac {1}{a}}\, \sqrt {x \left (a x -1\right )}\, a -3 a x +1}{a x +1}\right ) \sqrt {a}-6 \ln \left (\frac {2 \sqrt {x \left (a x -1\right )}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a \sqrt {\frac {1}{a}}\right )}{2 \sqrt {x \left (a x -1\right )}\, a^{\frac {3}{2}} \sqrt {\frac {1}{a}}}\) \(189\)

Input:

int((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1),x,method=_RETURNVERBOSE)
 

Output:

x*(c*(a*x-1)/a/x)^(1/2)+(-5/2*ln((-1/2*a*c+a^2*c*x)/(a^2*c)^(1/2)+(a^2*c*x 
^2-a*c*x)^(1/2))/(a^2*c)^(1/2)-2/a*2^(1/2)/c^(1/2)*ln((4*c-3*(x+1/a)*a*c+2 
*2^(1/2)*c^(1/2)*((x+1/a)^2*a^2*c-3*(x+1/a)*a*c+2*c)^(1/2))/(x+1/a)))*(c*( 
a*x-1)*a*x)^(1/2)*(c*(a*x-1)/a/x)^(1/2)/(a*x-1)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 236, normalized size of antiderivative = 2.57 \[ \int e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\left [\frac {2 \, a x \sqrt {\frac {a c x - c}{a x}} + 4 \, \sqrt {2} \sqrt {c} \log \left (-\frac {2 \, \sqrt {2} a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}} + 3 \, a c x - c}{a x + 1}\right ) + 5 \, \sqrt {c} \log \left (-2 \, a c x + 2 \, a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}} + c\right )}{2 \, a}, \frac {a x \sqrt {\frac {a c x - c}{a x}} - 4 \, \sqrt {2} \sqrt {-c} \arctan \left (\frac {\sqrt {2} a \sqrt {-c} x \sqrt {\frac {a c x - c}{a x}}}{a c x - c}\right ) + 5 \, \sqrt {-c} \arctan \left (\frac {a \sqrt {-c} x \sqrt {\frac {a c x - c}{a x}}}{a c x - c}\right )}{a}\right ] \] Input:

integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1),x, algorithm="fricas")
 

Output:

[1/2*(2*a*x*sqrt((a*c*x - c)/(a*x)) + 4*sqrt(2)*sqrt(c)*log(-(2*sqrt(2)*a* 
sqrt(c)*x*sqrt((a*c*x - c)/(a*x)) + 3*a*c*x - c)/(a*x + 1)) + 5*sqrt(c)*lo 
g(-2*a*c*x + 2*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x)) + c))/a, (a*x*sqrt((a*c 
*x - c)/(a*x)) - 4*sqrt(2)*sqrt(-c)*arctan(sqrt(2)*a*sqrt(-c)*x*sqrt((a*c* 
x - c)/(a*x))/(a*c*x - c)) + 5*sqrt(-c)*arctan(a*sqrt(-c)*x*sqrt((a*c*x - 
c)/(a*x))/(a*c*x - c)))/a]
 

Sympy [F]

\[ \int e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right )} \left (a x - 1\right )}{a x + 1}\, dx \] Input:

integrate((c-c/a/x)**(1/2)*(a*x-1)/(a*x+1),x)
 

Output:

Integral(sqrt(-c*(-1 + 1/(a*x)))*(a*x - 1)/(a*x + 1), x)
 

Maxima [F]

\[ \int e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\int { \frac {{\left (a x - 1\right )} \sqrt {c - \frac {c}{a x}}}{a x + 1} \,d x } \] Input:

integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1),x, algorithm="maxima")
 

Output:

integrate((a*x - 1)*sqrt(c - c/(a*x))/(a*x + 1), x)
 

Giac [F(-2)]

Exception generated. \[ \int e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\int \frac {\sqrt {c-\frac {c}{a\,x}}\,\left (a\,x-1\right )}{a\,x+1} \,d x \] Input:

int(((c - c/(a*x))^(1/2)*(a*x - 1))/(a*x + 1),x)
 

Output:

int(((c - c/(a*x))^(1/2)*(a*x - 1))/(a*x + 1), x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.16 \[ \int e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\frac {\sqrt {c}\, \left (\sqrt {x}\, \sqrt {a}\, \sqrt {a x -1}+2 \sqrt {2}\, \mathrm {log}\left (\sqrt {a x -1}+\sqrt {x}\, \sqrt {a}-\sqrt {2}\, i +i \right )+2 \sqrt {2}\, \mathrm {log}\left (\sqrt {a x -1}+\sqrt {x}\, \sqrt {a}+\sqrt {2}\, i -i \right )-2 \sqrt {2}\, \mathrm {log}\left (2 \sqrt {x}\, \sqrt {a}\, \sqrt {a x -1}+2 \sqrt {2}+2 a x +2\right )-5 \,\mathrm {log}\left (\sqrt {a x -1}+\sqrt {x}\, \sqrt {a}\right )\right )}{a} \] Input:

int((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1),x)
 

Output:

(sqrt(c)*(sqrt(x)*sqrt(a)*sqrt(a*x - 1) + 2*sqrt(2)*log(sqrt(a*x - 1) + sq 
rt(x)*sqrt(a) - sqrt(2)*i + i) + 2*sqrt(2)*log(sqrt(a*x - 1) + sqrt(x)*sqr 
t(a) + sqrt(2)*i - i) - 2*sqrt(2)*log(2*sqrt(x)*sqrt(a)*sqrt(a*x - 1) + 2* 
sqrt(2) + 2*a*x + 2) - 5*log(sqrt(a*x - 1) + sqrt(x)*sqrt(a))))/a