\(\int e^{n \coth ^{-1}(a x)} (c-\frac {c}{a x}) \, dx\) [556]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 185 \[ \int e^{n \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right ) \, dx=c \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{n/2} x-\frac {2 c (1-n) \left (1-\frac {1}{a x}\right )^{-n/2} \left (1+\frac {1}{a x}\right )^{n/2} \operatorname {Hypergeometric2F1}\left (1,\frac {n}{2},\frac {2+n}{2},\frac {a+\frac {1}{x}}{a-\frac {1}{x}}\right )}{a n}-\frac {2^{n/2} c \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \operatorname {Hypergeometric2F1}\left (1-\frac {n}{2},1-\frac {n}{2},2-\frac {n}{2},\frac {a-\frac {1}{x}}{2 a}\right )}{a (2-n)} \] Output:

c*(1-1/a/x)^(1-1/2*n)*(1+1/a/x)^(1/2*n)*x-2*c*(1-n)*(1+1/a/x)^(1/2*n)*hype 
rgeom([1, 1/2*n],[1+1/2*n],(a+1/x)/(a-1/x))/a/n/((1-1/a/x)^(1/2*n))-2^(1/2 
*n)*c*(1-1/a/x)^(1-1/2*n)*hypergeom([1-1/2*n, 1-1/2*n],[2-1/2*n],1/2*(a-1/ 
x)/a)/a/(2-n)
 

Mathematica [A] (verified)

Time = 0.45 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.84 \[ \int e^{n \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right ) \, dx=\frac {c e^{n \coth ^{-1}(a x)} \left (-e^{2 \coth ^{-1}(a x)} n \operatorname {Hypergeometric2F1}\left (1,1+\frac {n}{2},2+\frac {n}{2},-e^{2 \coth ^{-1}(a x)}\right )+e^{2 \coth ^{-1}(a x)} (-1+n) n \operatorname {Hypergeometric2F1}\left (1,1+\frac {n}{2},2+\frac {n}{2},e^{2 \coth ^{-1}(a x)}\right )+(2+n) \left (a n x+\operatorname {Hypergeometric2F1}\left (1,\frac {n}{2},1+\frac {n}{2},-e^{2 \coth ^{-1}(a x)}\right )+(-1+n) \operatorname {Hypergeometric2F1}\left (1,\frac {n}{2},1+\frac {n}{2},e^{2 \coth ^{-1}(a x)}\right )\right )\right )}{a n (2+n)} \] Input:

Integrate[E^(n*ArcCoth[a*x])*(c - c/(a*x)),x]
 

Output:

(c*E^(n*ArcCoth[a*x])*(-(E^(2*ArcCoth[a*x])*n*Hypergeometric2F1[1, 1 + n/2 
, 2 + n/2, -E^(2*ArcCoth[a*x])]) + E^(2*ArcCoth[a*x])*(-1 + n)*n*Hypergeom 
etric2F1[1, 1 + n/2, 2 + n/2, E^(2*ArcCoth[a*x])] + (2 + n)*(a*n*x + Hyper 
geometric2F1[1, n/2, 1 + n/2, -E^(2*ArcCoth[a*x])] + (-1 + n)*Hypergeometr 
ic2F1[1, n/2, 1 + n/2, E^(2*ArcCoth[a*x])])))/(a*n*(2 + n))
 

Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6732, 138, 79, 107, 141}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (c-\frac {c}{a x}\right ) e^{n \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6732

\(\displaystyle -c \int \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{n/2} x^2d\frac {1}{x}\)

\(\Big \downarrow \) 138

\(\displaystyle -c \left (\int \left (1-\frac {1}{a x}\right )^{-n/2} \left (1+\frac {1}{a x}\right )^{\frac {n-2}{2}} x^2d\frac {1}{x}-\frac {\int \left (1-\frac {1}{a x}\right )^{-n/2} \left (1+\frac {1}{a x}\right )^{\frac {n-2}{2}}d\frac {1}{x}}{a^2}\right )\)

\(\Big \downarrow \) 79

\(\displaystyle -c \left (\int \left (1-\frac {1}{a x}\right )^{-n/2} \left (1+\frac {1}{a x}\right )^{\frac {n-2}{2}} x^2d\frac {1}{x}+\frac {2^{n/2} \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \operatorname {Hypergeometric2F1}\left (\frac {2-n}{2},1-\frac {n}{2},2-\frac {n}{2},\frac {a-\frac {1}{x}}{2 a}\right )}{a (2-n)}\right )\)

\(\Big \downarrow \) 107

\(\displaystyle -c \left (-\frac {(1-n) \int \left (1-\frac {1}{a x}\right )^{-n/2} \left (1+\frac {1}{a x}\right )^{\frac {n-2}{2}} xd\frac {1}{x}}{a}+\frac {2^{n/2} \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \operatorname {Hypergeometric2F1}\left (\frac {2-n}{2},1-\frac {n}{2},2-\frac {n}{2},\frac {a-\frac {1}{x}}{2 a}\right )}{a (2-n)}+x \left (-\left (\frac {1}{a x}+1\right )^{n/2}\right ) \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}}\right )\)

\(\Big \downarrow \) 141

\(\displaystyle -c \left (\frac {2^{n/2} \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}} \operatorname {Hypergeometric2F1}\left (\frac {2-n}{2},1-\frac {n}{2},2-\frac {n}{2},\frac {a-\frac {1}{x}}{2 a}\right )}{a (2-n)}+\frac {2 (1-n) \left (\frac {1}{a x}+1\right )^{n/2} \left (1-\frac {1}{a x}\right )^{-n/2} \operatorname {Hypergeometric2F1}\left (1,\frac {n}{2},\frac {n+2}{2},\frac {a+\frac {1}{x}}{a-\frac {1}{x}}\right )}{a n}+x \left (-\left (\frac {1}{a x}+1\right )^{n/2}\right ) \left (1-\frac {1}{a x}\right )^{1-\frac {n}{2}}\right )\)

Input:

Int[E^(n*ArcCoth[a*x])*(c - c/(a*x)),x]
 

Output:

-(c*(-((1 - 1/(a*x))^(1 - n/2)*(1 + 1/(a*x))^(n/2)*x) + (2*(1 - n)*(1 + 1/ 
(a*x))^(n/2)*Hypergeometric2F1[1, n/2, (2 + n)/2, (a + x^(-1))/(a - x^(-1) 
)])/(a*n*(1 - 1/(a*x))^(n/2)) + (2^(n/2)*(1 - 1/(a*x))^(1 - n/2)*Hypergeom 
etric2F1[(2 - n)/2, 1 - n/2, 2 - n/2, (a - x^(-1))/(2*a)])/(a*(2 - n))))
 

Defintions of rubi rules used

rule 79
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(( 
a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c - a*d))^n))*Hypergeometric2F1[-n, m + 1 
, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}, x] 
&&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] 
 ||  !(RationalQ[n] && GtQ[-d/(b*c - a*d), 0]))
 

rule 107
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[(a*d*f*(m + 1) + b*c*f*(n + 
 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 
 1)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x 
] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || SumSimplerQ[m, 1])
 

rule 138
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_))^2, x_] :> Simp[b*(d/f^2)   Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], 
 x] + Simp[(b*e - a*f)*((d*e - c*f)/f^2)   Int[(a + b*x)^(m - 1)*((c + d*x) 
^(n - 1)/(e + f*x)^2), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ 
[m + n, 0] && EqQ[2*b*d*e - f*(b*c + a*d), 0]
 

rule 141
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/((m + 1)*(b*e - a*f)^( 
n + 1)*(e + f*x)^(m + 1)))*Hypergeometric2F1[m + 1, -n, m + 2, (-(d*e - c*f 
))*((a + b*x)/((b*c - a*d)*(e + f*x)))], x] /; FreeQ[{a, b, c, d, e, f, m, 
p}, x] && EqQ[m + n + p + 2, 0] && ILtQ[n, 0] && (SumSimplerQ[m, 1] ||  !Su 
mSimplerQ[p, 1]) &&  !ILtQ[m, 0]
 

rule 6732
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> S 
imp[-c^p   Subst[Int[(1 + d*(x/c))^p*((1 + x/a)^(n/2)/(x^2*(1 - x/a)^(n/2)) 
), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && 
  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0])
 
Maple [F]

\[\int {\mathrm e}^{n \,\operatorname {arccoth}\left (a x \right )} \left (c -\frac {c}{a x}\right )d x\]

Input:

int(exp(n*arccoth(a*x))*(c-c/a/x),x)
 

Output:

int(exp(n*arccoth(a*x))*(c-c/a/x),x)
 

Fricas [F]

\[ \int e^{n \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right ) \, dx=\int { {\left (c - \frac {c}{a x}\right )} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \] Input:

integrate(exp(n*arccoth(a*x))*(c-c/a/x),x, algorithm="fricas")
 

Output:

integral((a*c*x - c)*((a*x + 1)/(a*x - 1))^(1/2*n)/(a*x), x)
 

Sympy [F]

\[ \int e^{n \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right ) \, dx=\frac {c \left (\int a e^{n \operatorname {acoth}{\left (a x \right )}}\, dx + \int \left (- \frac {e^{n \operatorname {acoth}{\left (a x \right )}}}{x}\right )\, dx\right )}{a} \] Input:

integrate(exp(n*acoth(a*x))*(c-c/a/x),x)
 

Output:

c*(Integral(a*exp(n*acoth(a*x)), x) + Integral(-exp(n*acoth(a*x))/x, x))/a
 

Maxima [F]

\[ \int e^{n \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right ) \, dx=\int { {\left (c - \frac {c}{a x}\right )} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \] Input:

integrate(exp(n*arccoth(a*x))*(c-c/a/x),x, algorithm="maxima")
 

Output:

integrate((c - c/(a*x))*((a*x + 1)/(a*x - 1))^(1/2*n), x)
 

Giac [F]

\[ \int e^{n \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right ) \, dx=\int { {\left (c - \frac {c}{a x}\right )} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \] Input:

integrate(exp(n*arccoth(a*x))*(c-c/a/x),x, algorithm="giac")
 

Output:

integrate((c - c/(a*x))*((a*x + 1)/(a*x - 1))^(1/2*n), x)
 

Mupad [F(-1)]

Timed out. \[ \int e^{n \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right ) \, dx=\int {\mathrm {e}}^{n\,\mathrm {acoth}\left (a\,x\right )}\,\left (c-\frac {c}{a\,x}\right ) \,d x \] Input:

int(exp(n*acoth(a*x))*(c - c/(a*x)),x)
 

Output:

int(exp(n*acoth(a*x))*(c - c/(a*x)), x)
 

Reduce [F]

\[ \int e^{n \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right ) \, dx=\frac {c \left (\left (\int e^{\mathit {acoth} \left (a x \right ) n}d x \right ) a -\left (\int \frac {e^{\mathit {acoth} \left (a x \right ) n}}{x}d x \right )\right )}{a} \] Input:

int(exp(n*acoth(a*x))*(c-c/a/x),x)
 

Output:

(c*(int(e**(acoth(a*x)*n),x)*a - int(e**(acoth(a*x)*n)/x,x)))/a