\(\int e^{-2 \coth ^{-1}(a x)} (c-\frac {c}{a x})^p \, dx\) [569]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 114 \[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^p \, dx=\frac {\left (c-\frac {c}{a x}\right )^{2+p} x}{c^2}+\frac {\left (c-\frac {c}{a x}\right )^{2+p} \operatorname {Hypergeometric2F1}\left (1,2+p,3+p,\frac {a-\frac {1}{x}}{2 a}\right )}{2 a c^2 (2+p)}-\frac {\left (c-\frac {c}{a x}\right )^{2+p} \operatorname {Hypergeometric2F1}\left (1,2+p,3+p,1-\frac {1}{a x}\right )}{a c^2} \] Output:

(c-c/a/x)^(2+p)*x/c^2+1/2*(c-c/a/x)^(2+p)*hypergeom([1, 2+p],[3+p],1/2*(a- 
1/x)/a)/a/c^2/(2+p)-(c-c/a/x)^(2+p)*hypergeom([1, 2+p],[3+p],1-1/a/x)/a/c^ 
2
 

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.76 \[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^p \, dx=\frac {\left (c-\frac {c}{a x}\right )^p (-1+a x)^2 \left (\operatorname {Hypergeometric2F1}\left (1,2+p,3+p,\frac {a-\frac {1}{x}}{2 a}\right )+2 (2+p) \left (a x-\operatorname {Hypergeometric2F1}\left (1,2+p,3+p,1-\frac {1}{a x}\right )\right )\right )}{2 a^3 (2+p) x^2} \] Input:

Integrate[(c - c/(a*x))^p/E^(2*ArcCoth[a*x]),x]
 

Output:

((c - c/(a*x))^p*(-1 + a*x)^2*(Hypergeometric2F1[1, 2 + p, 3 + p, (a - x^( 
-1))/(2*a)] + 2*(2 + p)*(a*x - Hypergeometric2F1[1, 2 + p, 3 + p, 1 - 1/(a 
*x)])))/(2*a^3*(2 + p)*x^2)
 

Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.09, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {6717, 6683, 1035, 281, 899, 114, 27, 174, 75, 78}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^p \, dx\)

\(\Big \downarrow \) 6717

\(\displaystyle -\int e^{-2 \text {arctanh}(a x)} \left (c-\frac {c}{a x}\right )^pdx\)

\(\Big \downarrow \) 6683

\(\displaystyle -\int \frac {\left (c-\frac {c}{a x}\right )^p (1-a x)}{a x+1}dx\)

\(\Big \downarrow \) 1035

\(\displaystyle -\int \frac {\left (\frac {1}{x}-a\right ) \left (c-\frac {c}{a x}\right )^p}{a+\frac {1}{x}}dx\)

\(\Big \downarrow \) 281

\(\displaystyle \frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{p+1}}{a+\frac {1}{x}}dx}{c}\)

\(\Big \downarrow \) 899

\(\displaystyle -\frac {a \int \frac {\left (c-\frac {c}{a x}\right )^{p+1} x^2}{a+\frac {1}{x}}d\frac {1}{x}}{c}\)

\(\Big \downarrow \) 114

\(\displaystyle -\frac {a \left (-\frac {\int \frac {c \left (c-\frac {c}{a x}\right )^{p+1} \left (\frac {p+1}{x}+a (p+2)\right ) x}{a \left (a+\frac {1}{x}\right )}d\frac {1}{x}}{a c}-\frac {x \left (c-\frac {c}{a x}\right )^{p+2}}{a c}\right )}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a \left (-\frac {\int \frac {\left (c-\frac {c}{a x}\right )^{p+1} \left (\frac {p+1}{x}+a (p+2)\right ) x}{a+\frac {1}{x}}d\frac {1}{x}}{a^2}-\frac {x \left (c-\frac {c}{a x}\right )^{p+2}}{a c}\right )}{c}\)

\(\Big \downarrow \) 174

\(\displaystyle -\frac {a \left (-\frac {(p+2) \int \left (c-\frac {c}{a x}\right )^{p+1} xd\frac {1}{x}-\int \frac {\left (c-\frac {c}{a x}\right )^{p+1}}{a+\frac {1}{x}}d\frac {1}{x}}{a^2}-\frac {x \left (c-\frac {c}{a x}\right )^{p+2}}{a c}\right )}{c}\)

\(\Big \downarrow \) 75

\(\displaystyle -\frac {a \left (-\frac {-\int \frac {\left (c-\frac {c}{a x}\right )^{p+1}}{a+\frac {1}{x}}d\frac {1}{x}-\frac {\left (c-\frac {c}{a x}\right )^{p+2} \operatorname {Hypergeometric2F1}\left (1,p+2,p+3,1-\frac {1}{a x}\right )}{c}}{a^2}-\frac {x \left (c-\frac {c}{a x}\right )^{p+2}}{a c}\right )}{c}\)

\(\Big \downarrow \) 78

\(\displaystyle -\frac {a \left (-\frac {\frac {\left (c-\frac {c}{a x}\right )^{p+2} \operatorname {Hypergeometric2F1}\left (1,p+2,p+3,\frac {a-\frac {1}{x}}{2 a}\right )}{2 c (p+2)}-\frac {\left (c-\frac {c}{a x}\right )^{p+2} \operatorname {Hypergeometric2F1}\left (1,p+2,p+3,1-\frac {1}{a x}\right )}{c}}{a^2}-\frac {x \left (c-\frac {c}{a x}\right )^{p+2}}{a c}\right )}{c}\)

Input:

Int[(c - c/(a*x))^p/E^(2*ArcCoth[a*x]),x]
 

Output:

-((a*(-(((c - c/(a*x))^(2 + p)*x)/(a*c)) - (((c - c/(a*x))^(2 + p)*Hyperge 
ometric2F1[1, 2 + p, 3 + p, (a - x^(-1))/(2*a)])/(2*c*(2 + p)) - ((c - c/( 
a*x))^(2 + p)*Hypergeometric2F1[1, 2 + p, 3 + p, 1 - 1/(a*x)])/c)/a^2))/c)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 75
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x 
)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))*Hypergeometric2F1[-m, n + 1, n + 2, 1 + 
 d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (IntegerQ[m] 
 || GtQ[-d/(b*c), 0])
 

rule 78
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b 
*c - a*d)^n*((a + b*x)^(m + 1)/(b^(n + 1)*(m + 1)))*Hypergeometric2F1[-n, m 
 + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m}, x] 
 &&  !IntegerQ[m] && IntegerQ[n]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 281
Int[(u_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_ 
Symbol] :> Simp[(b/d)^p   Int[u*(c + d*x^n)^(p + q), x], x] /; FreeQ[{a, b, 
 c, d, n, p, q}, x] && EqQ[b*c - a*d, 0] && IntegerQ[p] &&  !(IntegerQ[q] & 
& SimplerQ[a + b*x^n, c + d*x^n])
 

rule 899
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol 
] :> -Subst[Int[(a + b/x^n)^p*((c + d/x^n)^q/x^2), x], x, 1/x] /; FreeQ[{a, 
 b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]
 

rule 1035
Int[((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.))^(p_.)*((e_) 
 + (f_.)*(x_)^(n_.))^(r_.), x_Symbol] :> Int[x^(n*(p + r))*(b + a/x^n)^p*(c 
 + d/x^n)^q*(f + e/x^n)^r, x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && EqQ[ 
mn, -n] && IntegerQ[p] && IntegerQ[r]
 

rule 6683
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] 
:> Int[u*(c + d/x)^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, 
d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !G 
tQ[c, 0]
 

rule 6717
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Simp[(-1)^(n/2)   Int[ 
u*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[a, x] && IntegerQ[n/2]
 
Maple [F]

\[\int \frac {\left (c -\frac {c}{a x}\right )^{p} \left (a x -1\right )}{a x +1}d x\]

Input:

int((c-c/a/x)^p*(a*x-1)/(a*x+1),x)
 

Output:

int((c-c/a/x)^p*(a*x-1)/(a*x+1),x)
 

Fricas [F]

\[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^p \, dx=\int { \frac {{\left (a x - 1\right )} {\left (c - \frac {c}{a x}\right )}^{p}}{a x + 1} \,d x } \] Input:

integrate((c-c/a/x)^p*(a*x-1)/(a*x+1),x, algorithm="fricas")
 

Output:

integral((a*x - 1)*((a*c*x - c)/(a*x))^p/(a*x + 1), x)
 

Sympy [F]

\[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^p \, dx=\int \frac {\left (- c \left (-1 + \frac {1}{a x}\right )\right )^{p} \left (a x - 1\right )}{a x + 1}\, dx \] Input:

integrate((c-c/a/x)**p*(a*x-1)/(a*x+1),x)
 

Output:

Integral((-c*(-1 + 1/(a*x)))**p*(a*x - 1)/(a*x + 1), x)
 

Maxima [F]

\[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^p \, dx=\int { \frac {{\left (a x - 1\right )} {\left (c - \frac {c}{a x}\right )}^{p}}{a x + 1} \,d x } \] Input:

integrate((c-c/a/x)^p*(a*x-1)/(a*x+1),x, algorithm="maxima")
 

Output:

integrate((a*x - 1)*(c - c/(a*x))^p/(a*x + 1), x)
 

Giac [F]

\[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^p \, dx=\int { \frac {{\left (a x - 1\right )} {\left (c - \frac {c}{a x}\right )}^{p}}{a x + 1} \,d x } \] Input:

integrate((c-c/a/x)^p*(a*x-1)/(a*x+1),x, algorithm="giac")
 

Output:

integrate((a*x - 1)*(c - c/(a*x))^p/(a*x + 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^p \, dx=\int \frac {{\left (c-\frac {c}{a\,x}\right )}^p\,\left (a\,x-1\right )}{a\,x+1} \,d x \] Input:

int(((c - c/(a*x))^p*(a*x - 1))/(a*x + 1),x)
                                                                                    
                                                                                    
 

Output:

int(((c - c/(a*x))^p*(a*x - 1))/(a*x + 1), x)
 

Reduce [F]

\[ \int e^{-2 \coth ^{-1}(a x)} \left (c-\frac {c}{a x}\right )^p \, dx=\frac {\left (a c x -c \right )^{p} a p x -\left (a c x -c \right )^{p} p +2 \left (a c x -c \right )^{p}+x^{p} \left (\int \frac {\left (a c x -c \right )^{p}}{x^{p} a^{2} x^{3}-x^{p} x}d x \right ) p^{2}-2 x^{p} \left (\int \frac {\left (a c x -c \right )^{p}}{x^{p} a^{2} x^{3}-x^{p} x}d x \right ) p -x^{p} \left (\int \frac {\left (a c x -c \right )^{p} x}{x^{p} a^{2} x^{2}-x^{p}}d x \right ) a^{2} p^{2}-2 x^{p} \left (\int \frac {\left (a c x -c \right )^{p} x}{x^{p} a^{2} x^{2}-x^{p}}d x \right ) a^{2} p}{x^{p} a^{p} a p} \] Input:

int((c-c/a/x)^p*(a*x-1)/(a*x+1),x)
 

Output:

((a*c*x - c)**p*a*p*x - (a*c*x - c)**p*p + 2*(a*c*x - c)**p + x**p*int((a* 
c*x - c)**p/(x**p*a**2*x**3 - x**p*x),x)*p**2 - 2*x**p*int((a*c*x - c)**p/ 
(x**p*a**2*x**3 - x**p*x),x)*p - x**p*int(((a*c*x - c)**p*x)/(x**p*a**2*x* 
*2 - x**p),x)*a**2*p**2 - 2*x**p*int(((a*c*x - c)**p*x)/(x**p*a**2*x**2 - 
x**p),x)*a**2*p)/(x**p*a**p*a*p)