\(\int e^{n \coth ^{-1}(a x)} (c-a^2 c x^2)^{3/2} \, dx\) [718]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 116 \[ \int e^{n \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2} \, dx=\frac {32 \left (1-\frac {1}{a x}\right )^{\frac {5-n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {1}{2} (-5+n)} \left (c-a^2 c x^2\right )^{3/2} \operatorname {Hypergeometric2F1}\left (5,\frac {5-n}{2},\frac {7-n}{2},\frac {a-\frac {1}{x}}{a+\frac {1}{x}}\right )}{a^4 (5-n) \left (1-\frac {1}{a^2 x^2}\right )^{3/2} x^3} \] Output:

32*(1-1/a/x)^(5/2-1/2*n)*(1+1/a/x)^(-5/2+1/2*n)*(-a^2*c*x^2+c)^(3/2)*hyper 
geom([5, 5/2-1/2*n],[7/2-1/2*n],(a-1/x)/(a+1/x))/a^4/(5-n)/(1-1/a^2/x^2)^( 
3/2)/x^3
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(280\) vs. \(2(116)=232\).

Time = 3.06 (sec) , antiderivative size = 280, normalized size of antiderivative = 2.41 \[ \int e^{n \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2} \, dx=\frac {c^2 \left (96 a^3 c \left (1-\frac {1}{a^2 x^2}\right )^{3/2} x^3 \left (a e^{n \coth ^{-1}(a x)} \sqrt {1-\frac {1}{a^2 x^2}} x (n+a x)+2 e^{(1+n) \coth ^{-1}(a x)} (-1+n) \operatorname {Hypergeometric2F1}\left (1,\frac {1+n}{2},\frac {3+n}{2},e^{2 \coth ^{-1}(a x)}\right )\right )-c \left (-1+a^2 x^2\right ) \left (2 e^{n \coth ^{-1}(a x)} \left (-1+a^2 x^2\right )^2 \left (-a \left (-21+n^2\right ) x+2 n \left (1-n^2+\left (3+n^2\right ) \cosh \left (2 \coth ^{-1}(a x)\right )\right )+a \left (3+n^2\right ) \sqrt {1-\frac {1}{a^2 x^2}} x \cosh \left (3 \coth ^{-1}(a x)\right )\right )+16 a e^{(1+n) \coth ^{-1}(a x)} \left (-3+3 n-n^2+n^3\right ) \sqrt {1-\frac {1}{a^2 x^2}} x \operatorname {Hypergeometric2F1}\left (1,\frac {1+n}{2},\frac {3+n}{2},e^{2 \coth ^{-1}(a x)}\right )\right )\right )}{192 a \left (c-a^2 c x^2\right )^{3/2}} \] Input:

Integrate[E^(n*ArcCoth[a*x])*(c - a^2*c*x^2)^(3/2),x]
 

Output:

(c^2*(96*a^3*c*(1 - 1/(a^2*x^2))^(3/2)*x^3*(a*E^(n*ArcCoth[a*x])*Sqrt[1 - 
1/(a^2*x^2)]*x*(n + a*x) + 2*E^((1 + n)*ArcCoth[a*x])*(-1 + n)*Hypergeomet 
ric2F1[1, (1 + n)/2, (3 + n)/2, E^(2*ArcCoth[a*x])]) - c*(-1 + a^2*x^2)*(2 
*E^(n*ArcCoth[a*x])*(-1 + a^2*x^2)^2*(-(a*(-21 + n^2)*x) + 2*n*(1 - n^2 + 
(3 + n^2)*Cosh[2*ArcCoth[a*x]]) + a*(3 + n^2)*Sqrt[1 - 1/(a^2*x^2)]*x*Cosh 
[3*ArcCoth[a*x]]) + 16*a*E^((1 + n)*ArcCoth[a*x])*(-3 + 3*n - n^2 + n^3)*S 
qrt[1 - 1/(a^2*x^2)]*x*Hypergeometric2F1[1, (1 + n)/2, (3 + n)/2, E^(2*Arc 
Coth[a*x])])))/(192*a*(c - a^2*c*x^2)^(3/2))
 

Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6746, 6749, 141}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (c-a^2 c x^2\right )^{3/2} e^{n \coth ^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6746

\(\displaystyle \frac {\left (c-a^2 c x^2\right )^{3/2} \int e^{n \coth ^{-1}(a x)} \left (1-\frac {1}{a^2 x^2}\right )^{3/2} x^3dx}{x^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}\)

\(\Big \downarrow \) 6749

\(\displaystyle -\frac {\left (c-a^2 c x^2\right )^{3/2} \int \left (1-\frac {1}{a x}\right )^{\frac {3-n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {n+3}{2}} x^5d\frac {1}{x}}{x^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}\)

\(\Big \downarrow \) 141

\(\displaystyle \frac {32 \left (c-a^2 c x^2\right )^{3/2} \left (1-\frac {1}{a x}\right )^{\frac {5-n}{2}} \left (\frac {1}{a x}+1\right )^{\frac {n-5}{2}} \operatorname {Hypergeometric2F1}\left (5,\frac {5-n}{2},\frac {7-n}{2},\frac {a-\frac {1}{x}}{a+\frac {1}{x}}\right )}{a^4 (5-n) x^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}\)

Input:

Int[E^(n*ArcCoth[a*x])*(c - a^2*c*x^2)^(3/2),x]
 

Output:

(32*(1 - 1/(a*x))^((5 - n)/2)*(1 + 1/(a*x))^((-5 + n)/2)*(c - a^2*c*x^2)^( 
3/2)*Hypergeometric2F1[5, (5 - n)/2, (7 - n)/2, (a - x^(-1))/(a + x^(-1))] 
)/(a^4*(5 - n)*(1 - 1/(a^2*x^2))^(3/2)*x^3)
 

Defintions of rubi rules used

rule 141
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/((m + 1)*(b*e - a*f)^( 
n + 1)*(e + f*x)^(m + 1)))*Hypergeometric2F1[m + 1, -n, m + 2, (-(d*e - c*f 
))*((a + b*x)/((b*c - a*d)*(e + f*x)))], x] /; FreeQ[{a, b, c, d, e, f, m, 
p}, x] && EqQ[m + n + p + 2, 0] && ILtQ[n, 0] && (SumSimplerQ[m, 1] ||  !Su 
mSimplerQ[p, 1]) &&  !ILtQ[m, 0]
 

rule 6746
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbo 
l] :> Simp[(c + d*x^2)^p/(x^(2*p)*(1 - 1/(a^2*x^2))^p)   Int[u*x^(2*p)*(1 - 
 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && 
EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]
 

rule 6749
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.)*(x_)^(m_.), x 
_Symbol] :> Simp[-c^p   Subst[Int[(1 - x/a)^(p - n/2)*((1 + x/a)^(p + n/2)/ 
x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 
0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegersQ[2*p, p + 
 n/2] && IntegerQ[m]
 
Maple [F]

\[\int {\mathrm e}^{n \,\operatorname {arccoth}\left (a x \right )} \left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}d x\]

Input:

int(exp(n*arccoth(a*x))*(-a^2*c*x^2+c)^(3/2),x)
 

Output:

int(exp(n*arccoth(a*x))*(-a^2*c*x^2+c)^(3/2),x)
 

Fricas [F]

\[ \int e^{n \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2} \, dx=\int { {\left (-a^{2} c x^{2} + c\right )}^{\frac {3}{2}} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \] Input:

integrate(exp(n*arccoth(a*x))*(-a^2*c*x^2+c)^(3/2),x, algorithm="fricas")
 

Output:

integral(-(a^2*c*x^2 - c)*sqrt(-a^2*c*x^2 + c)*((a*x + 1)/(a*x - 1))^(1/2* 
n), x)
 

Sympy [F]

\[ \int e^{n \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2} \, dx=\int \left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}} e^{n \operatorname {acoth}{\left (a x \right )}}\, dx \] Input:

integrate(exp(n*acoth(a*x))*(-a**2*c*x**2+c)**(3/2),x)
 

Output:

Integral((-c*(a*x - 1)*(a*x + 1))**(3/2)*exp(n*acoth(a*x)), x)
 

Maxima [F]

\[ \int e^{n \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2} \, dx=\int { {\left (-a^{2} c x^{2} + c\right )}^{\frac {3}{2}} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \] Input:

integrate(exp(n*arccoth(a*x))*(-a^2*c*x^2+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate((-a^2*c*x^2 + c)^(3/2)*((a*x + 1)/(a*x - 1))^(1/2*n), x)
 

Giac [F(-2)]

Exception generated. \[ \int e^{n \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(exp(n*arccoth(a*x))*(-a^2*c*x^2+c)^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int e^{n \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2} \, dx=\int {\mathrm {e}}^{n\,\mathrm {acoth}\left (a\,x\right )}\,{\left (c-a^2\,c\,x^2\right )}^{3/2} \,d x \] Input:

int(exp(n*acoth(a*x))*(c - a^2*c*x^2)^(3/2),x)
 

Output:

int(exp(n*acoth(a*x))*(c - a^2*c*x^2)^(3/2), x)
 

Reduce [F]

\[ \int e^{n \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2} \, dx=\sqrt {c}\, c \left (-\left (\int e^{\mathit {acoth} \left (a x \right ) n} \sqrt {-a^{2} x^{2}+1}\, x^{2}d x \right ) a^{2}+\int e^{\mathit {acoth} \left (a x \right ) n} \sqrt {-a^{2} x^{2}+1}d x \right ) \] Input:

int(exp(n*acoth(a*x))*(-a^2*c*x^2+c)^(3/2),x)
 

Output:

sqrt(c)*c*( - int(e**(acoth(a*x)*n)*sqrt( - a**2*x**2 + 1)*x**2,x)*a**2 + 
int(e**(acoth(a*x)*n)*sqrt( - a**2*x**2 + 1),x))