\(\int e^{\text {sech}^{-1}(a x)} x^m \, dx\) [42]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [C] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 10, antiderivative size = 1 \[ \int e^{\text {sech}^{-1}(a x)} x^m \, dx=0 \] Output:

0
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 1 in optimal.

Time = 0.35 (sec) , antiderivative size = 145, normalized size of antiderivative = 145.00 \[ \int e^{\text {sech}^{-1}(a x)} x^m \, dx=-\frac {2^{1+m} e^{2 \text {sech}^{-1}(a x)} \left (\frac {e^{\text {sech}^{-1}(a x)}}{1+e^{2 \text {sech}^{-1}(a x)}}\right )^m \left (1+e^{2 \text {sech}^{-1}(a x)}\right )^m x^m (a x)^{-m} \left (-\left ((4+m) \operatorname {Hypergeometric2F1}\left (1+\frac {m}{2},2+m,2+\frac {m}{2},-e^{2 \text {sech}^{-1}(a x)}\right )\right )+e^{2 \text {sech}^{-1}(a x)} (2+m) \operatorname {Hypergeometric2F1}\left (2+\frac {m}{2},2+m,3+\frac {m}{2},-e^{2 \text {sech}^{-1}(a x)}\right )\right )}{a (2+m) (4+m)} \] Input:

Integrate[E^ArcSech[a*x]*x^m,x]
 

Output:

-((2^(1 + m)*E^(2*ArcSech[a*x])*(E^ArcSech[a*x]/(1 + E^(2*ArcSech[a*x])))^ 
m*(1 + E^(2*ArcSech[a*x]))^m*x^m*(-((4 + m)*Hypergeometric2F1[1 + m/2, 2 + 
 m, 2 + m/2, -E^(2*ArcSech[a*x])]) + E^(2*ArcSech[a*x])*(2 + m)*Hypergeome 
tric2F1[2 + m/2, 2 + m, 3 + m/2, -E^(2*ArcSech[a*x])]))/(a*(2 + m)*(4 + m) 
*(a*x)^m))
 

Rubi [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 1 in optimal.

Time = 0.43 (sec) , antiderivative size = 91, normalized size of antiderivative = 91.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {6889, 15, 135, 278}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^m e^{\text {sech}^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6889

\(\displaystyle \frac {\int x^{m-1}dx}{a (m+1)}+\frac {\sqrt {\frac {1}{a x+1}} \sqrt {a x+1} \int \frac {x^{m-1}}{\sqrt {1-a x} \sqrt {a x+1}}dx}{a (m+1)}+\frac {x^{m+1} e^{\text {sech}^{-1}(a x)}}{m+1}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {\sqrt {\frac {1}{a x+1}} \sqrt {a x+1} \int \frac {x^{m-1}}{\sqrt {1-a x} \sqrt {a x+1}}dx}{a (m+1)}+\frac {x^{m+1} e^{\text {sech}^{-1}(a x)}}{m+1}+\frac {x^m}{a m (m+1)}\)

\(\Big \downarrow \) 135

\(\displaystyle \frac {\sqrt {\frac {1}{a x+1}} \sqrt {a x+1} \int \frac {x^{m-1}}{\sqrt {1-a^2 x^2}}dx}{a (m+1)}+\frac {x^{m+1} e^{\text {sech}^{-1}(a x)}}{m+1}+\frac {x^m}{a m (m+1)}\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {\sqrt {\frac {1}{a x+1}} \sqrt {a x+1} x^m \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m}{2},\frac {m+2}{2},a^2 x^2\right )}{a m (m+1)}+\frac {x^{m+1} e^{\text {sech}^{-1}(a x)}}{m+1}+\frac {x^m}{a m (m+1)}\)

Input:

Int[E^ArcSech[a*x]*x^m,x]
 

Output:

x^m/(a*m*(1 + m)) + (E^ArcSech[a*x]*x^(1 + m))/(1 + m) + (x^m*Sqrt[(1 + a* 
x)^(-1)]*Sqrt[1 + a*x]*Hypergeometric2F1[1/2, m/2, (2 + m)/2, a^2*x^2])/(a 
*m*(1 + m))
 

Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 135
Int[((f_.)*(x_))^(p_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), 
x_] :> Int[(a*c + b*d*x^2)^m*(f*x)^p, x] /; FreeQ[{a, b, c, d, f, m, n, p}, 
 x] && EqQ[b*c + a*d, 0] && EqQ[n, m] && GtQ[a, 0] && GtQ[c, 0]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 6889
Int[E^ArcSech[(a_.)*(x_)^(p_.)]*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(E^ 
ArcSech[a*x^p]/(m + 1)), x] + (Simp[p/(a*(m + 1))   Int[x^(m - p), x], x] + 
 Simp[p*(Sqrt[1 + a*x^p]/(a*(m + 1)))*Sqrt[1/(1 + a*x^p)]   Int[x^(m - p)/( 
Sqrt[1 + a*x^p]*Sqrt[1 - a*x^p]), x], x]) /; FreeQ[{a, m, p}, x] && NeQ[m, 
-1]
 
Maple [F]

\[\int \left (\frac {1}{a x}+\sqrt {-1+\frac {1}{a x}}\, \sqrt {1+\frac {1}{a x}}\right ) x^{m}d x\]

Input:

int((1/a/x+(-1+1/a/x)^(1/2)*(1+1/a/x)^(1/2))*x^m,x)
 

Output:

int((1/a/x+(-1+1/a/x)^(1/2)*(1+1/a/x)^(1/2))*x^m,x)
 

Fricas [F]

\[ \int e^{\text {sech}^{-1}(a x)} x^m \, dx=\int { x^{m} {\left (\sqrt {\frac {1}{a x} + 1} \sqrt {\frac {1}{a x} - 1} + \frac {1}{a x}\right )} \,d x } \] Input:

integrate((1/a/x+(-1+1/a/x)^(1/2)*(1+1/a/x)^(1/2))*x^m,x, algorithm="frica 
s")
 

Output:

integral((a*x*x^m*sqrt((a*x + 1)/(a*x))*sqrt(-(a*x - 1)/(a*x)) + x^m)/(a*x 
), x)
 

Sympy [F]

\[ \int e^{\text {sech}^{-1}(a x)} x^m \, dx=\frac {\int \frac {x^{m}}{x}\, dx + \int a x^{m} \sqrt {-1 + \frac {1}{a x}} \sqrt {1 + \frac {1}{a x}}\, dx}{a} \] Input:

integrate((1/a/x+(-1+1/a/x)**(1/2)*(1+1/a/x)**(1/2))*x**m,x)
 

Output:

(Integral(x**m/x, x) + Integral(a*x**m*sqrt(-1 + 1/(a*x))*sqrt(1 + 1/(a*x) 
), x))/a
 

Maxima [F]

\[ \int e^{\text {sech}^{-1}(a x)} x^m \, dx=\int { x^{m} {\left (\sqrt {\frac {1}{a x} + 1} \sqrt {\frac {1}{a x} - 1} + \frac {1}{a x}\right )} \,d x } \] Input:

integrate((1/a/x+(-1+1/a/x)^(1/2)*(1+1/a/x)^(1/2))*x^m,x, algorithm="maxim 
a")
 

Output:

integrate(sqrt(a*x + 1)*sqrt(-a*x + 1)*x^m/x, x)/a + x^m/(a*m)
 

Giac [F]

\[ \int e^{\text {sech}^{-1}(a x)} x^m \, dx=\int { x^{m} {\left (\sqrt {\frac {1}{a x} + 1} \sqrt {\frac {1}{a x} - 1} + \frac {1}{a x}\right )} \,d x } \] Input:

integrate((1/a/x+(-1+1/a/x)^(1/2)*(1+1/a/x)^(1/2))*x^m,x, algorithm="giac" 
)
 

Output:

integrate(x^m*(sqrt(1/(a*x) + 1)*sqrt(1/(a*x) - 1) + 1/(a*x)), x)
 

Mupad [F(-1)]

Timed out. \[ \int e^{\text {sech}^{-1}(a x)} x^m \, dx=\int x^m\,\left (\sqrt {\frac {1}{a\,x}-1}\,\sqrt {\frac {1}{a\,x}+1}+\frac {1}{a\,x}\right ) \,d x \] Input:

int(x^m*((1/(a*x) - 1)^(1/2)*(1/(a*x) + 1)^(1/2) + 1/(a*x)),x)
 

Output:

int(x^m*((1/(a*x) - 1)^(1/2)*(1/(a*x) + 1)^(1/2) + 1/(a*x)), x)
 

Reduce [F]

\[ \int e^{\text {sech}^{-1}(a x)} x^m \, dx=\frac {x^{m}+\left (\int \frac {x^{m} \sqrt {a x +1}\, \sqrt {-a x +1}}{x}d x \right ) m}{a m} \] Input:

int((1/a/x+(-1+1/a/x)^(1/2)*(1+1/a/x)^(1/2))*x^m,x)
 

Output:

(x**m + int((x**m*sqrt(a*x + 1)*sqrt( - a*x + 1))/x,x)*m)/(a*m)