\(\int \frac {e^{\text {sech}^{-1}(a x^p)}}{x} \, dx\) [68]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 85 \[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=-\frac {x^{-p}}{a p}-\frac {\sqrt {-1+\frac {x^{-p}}{a}} \sqrt {1+\frac {x^{-p}}{a}}}{p}+\frac {\arctan \left (\sqrt {-1+\frac {x^{-p}}{a}} \sqrt {1+\frac {x^{-p}}{a}}\right )}{p} \] Output:

-1/a/p/(x^p)-(-1+1/a/(x^p))^(1/2)*(1+1/a/(x^p))^(1/2)/p+arctan((-1+1/a/(x^ 
p))^(1/2)*(1+1/a/(x^p))^(1/2))/p
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.23 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.13 \[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=-\frac {i \left (-i x^{-p}-i \left (a+x^{-p}\right ) \sqrt {\frac {1-a x^p}{1+a x^p}}+a \log \left (-2 i a x^p+2 \sqrt {\frac {1-a x^p}{1+a x^p}} \left (1+a x^p\right )\right )\right )}{a p} \] Input:

Integrate[E^ArcSech[a*x^p]/x,x]
 

Output:

((-I)*((-I)/x^p - I*(a + x^(-p))*Sqrt[(1 - a*x^p)/(1 + a*x^p)] + a*Log[(-2 
*I)*a*x^p + 2*Sqrt[(1 - a*x^p)/(1 + a*x^p)]*(1 + a*x^p)]))/(a*p)
 

Rubi [A] (warning: unable to verify)

Time = 0.51 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.89, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6888, 791, 868, 773, 247, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx\)

\(\Big \downarrow \) 6888

\(\displaystyle \frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \int x^{-p-1} \sqrt {1-a x^p} \sqrt {a x^p+1}dx}{a}-\frac {x^{-p}}{a p}\)

\(\Big \downarrow \) 791

\(\displaystyle \frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \int x^{-p-1} \sqrt {1-a^2 x^{2 p}}dx}{a}-\frac {x^{-p}}{a p}\)

\(\Big \downarrow \) 868

\(\displaystyle -\frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \int \sqrt {1-a^2 x^{2 p}}dx^{-p}}{a p}-\frac {x^{-p}}{a p}\)

\(\Big \downarrow \) 773

\(\displaystyle \frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \int x^{2 p} \sqrt {1-a^2 x^{-2 p}}dx^p}{a p}-\frac {x^{-p}}{a p}\)

\(\Big \downarrow \) 247

\(\displaystyle \frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \left (x^p \left (-\sqrt {1-a^2 x^{-2 p}}\right )-a^2 \int \frac {1}{\sqrt {1-a^2 x^{-2 p}}}dx^p\right )}{a p}-\frac {x^{-p}}{a p}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {\sqrt {\frac {1}{a x^p+1}} \sqrt {a x^p+1} \left (x^p \left (-\sqrt {1-a^2 x^{-2 p}}\right )-a \arcsin \left (a x^p\right )\right )}{a p}-\frac {x^{-p}}{a p}\)

Input:

Int[E^ArcSech[a*x^p]/x,x]
 

Output:

-(1/(a*p*x^p)) + (Sqrt[(1 + a*x^p)^(-1)]*Sqrt[1 + a*x^p]*(-(x^p*Sqrt[1 - a 
^2/x^(2*p)]) - a*ArcSin[a*x^p]))/(a*p)
 

Defintions of rubi rules used

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 247
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 1))), x] - Simp[2*b*(p/(c^2*(m + 1)))   Int[ 
(c*x)^(m + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && GtQ[p, 
0] && LtQ[m, -1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomialQ[a, b, c, 2, 
m, p, x]
 

rule 773
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^ 
2, x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] &&  !IntegerQ[p]
 

rule 791
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_) 
^(n_))^(p_), x_Symbol] :> Int[(c*x)^m*(a1*a2 + b1*b2*x^(2*n))^p, x] /; Free 
Q[{a1, b1, a2, b2, c, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && (IntegerQ[p] 
 || (GtQ[a1, 0] && GtQ[a2, 0]))
 

rule 868
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1) 
 Subst[Int[(a + b*x^Simplify[n/(m + 1)])^p, x], x, x^(m + 1)], x] /; FreeQ[ 
{a, b, m, n, p}, x] && IntegerQ[Simplify[n/(m + 1)]] &&  !IntegerQ[n]
 

rule 6888
Int[E^ArcSech[(a_.)*(x_)^(p_.)]/(x_), x_Symbol] :> -Simp[(a*p*x^p)^(-1), x] 
 + Simp[(Sqrt[1 + a*x^p]/a)*Sqrt[1/(1 + a*x^p)]   Int[Sqrt[1 + a*x^p]*(Sqrt 
[1 - a*x^p]/x^(p + 1)), x], x] /; FreeQ[{a, p}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.36 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.36

method result size
derivativedivides \(\frac {-\frac {\sqrt {-\frac {\left (a \,x^{p}-1\right ) x^{-p}}{a}}\, \sqrt {\frac {\left (1+a \,x^{p}\right ) x^{-p}}{a}}\, \left (\arctan \left (\frac {\operatorname {csgn}\left (a \right ) a \,x^{p}}{\sqrt {-a^{2} x^{2 p}+1}}\right ) a \,x^{p}+\operatorname {csgn}\left (a \right ) \sqrt {-a^{2} x^{2 p}+1}\right ) \operatorname {csgn}\left (a \right )}{\sqrt {-a^{2} x^{2 p}+1}}-\frac {x^{-p}}{a}}{p}\) \(116\)
default \(\frac {-\frac {\sqrt {-\frac {\left (a \,x^{p}-1\right ) x^{-p}}{a}}\, \sqrt {\frac {\left (1+a \,x^{p}\right ) x^{-p}}{a}}\, \left (\arctan \left (\frac {\operatorname {csgn}\left (a \right ) a \,x^{p}}{\sqrt {-a^{2} x^{2 p}+1}}\right ) a \,x^{p}+\operatorname {csgn}\left (a \right ) \sqrt {-a^{2} x^{2 p}+1}\right ) \operatorname {csgn}\left (a \right )}{\sqrt {-a^{2} x^{2 p}+1}}-\frac {x^{-p}}{a}}{p}\) \(116\)

Input:

int((1/a/(x^p)+(-1+1/a/(x^p))^(1/2)*(1+1/a/(x^p))^(1/2))/x,x,method=_RETUR 
NVERBOSE)
 

Output:

1/p*(-(-(a*x^p-1)/a/(x^p))^(1/2)*((1+a*x^p)/a/(x^p))^(1/2)*(arctan(csgn(a) 
*a*x^p/(-(x^p)^2*a^2+1)^(1/2))*a*x^p+csgn(a)*(-(x^p)^2*a^2+1)^(1/2))*csgn( 
a)/(-(x^p)^2*a^2+1)^(1/2)-1/a/(x^p))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.20 \[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=-\frac {a x^{p} \sqrt {\frac {a x^{p} + 1}{a x^{p}}} \sqrt {-\frac {a x^{p} - 1}{a x^{p}}} - a x^{p} \arctan \left (\sqrt {\frac {a x^{p} + 1}{a x^{p}}} \sqrt {-\frac {a x^{p} - 1}{a x^{p}}}\right ) + 1}{a p x^{p}} \] Input:

integrate((1/a/(x^p)+(-1+1/a/(x^p))^(1/2)*(1+1/a/(x^p))^(1/2))/x,x, algori 
thm="fricas")
 

Output:

-(a*x^p*sqrt((a*x^p + 1)/(a*x^p))*sqrt(-(a*x^p - 1)/(a*x^p)) - a*x^p*arcta 
n(sqrt((a*x^p + 1)/(a*x^p))*sqrt(-(a*x^p - 1)/(a*x^p))) + 1)/(a*p*x^p)
 

Sympy [F]

\[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=\frac {\int \frac {x^{- p}}{x}\, dx + \int \frac {a \sqrt {-1 + \frac {x^{- p}}{a}} \sqrt {1 + \frac {x^{- p}}{a}}}{x}\, dx}{a} \] Input:

integrate((1/a/(x**p)+(-1+1/a/(x**p))**(1/2)*(1+1/a/(x**p))**(1/2))/x,x)
 

Output:

(Integral(1/(x*x**p), x) + Integral(a*sqrt(-1 + 1/(a*x**p))*sqrt(1 + 1/(a* 
x**p))/x, x))/a
 

Maxima [F]

\[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=\int { \frac {\sqrt {\frac {1}{a x^{p}} + 1} \sqrt {\frac {1}{a x^{p}} - 1} + \frac {1}{a x^{p}}}{x} \,d x } \] Input:

integrate((1/a/(x^p)+(-1+1/a/(x^p))^(1/2)*(1+1/a/(x^p))^(1/2))/x,x, algori 
thm="maxima")
 

Output:

integrate(sqrt(a*x^p + 1)*sqrt(-a*x^p + 1)/(x*x^p), x)/a - 1/(a*p*x^p)
 

Giac [F]

\[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=\int { \frac {\sqrt {\frac {1}{a x^{p}} + 1} \sqrt {\frac {1}{a x^{p}} - 1} + \frac {1}{a x^{p}}}{x} \,d x } \] Input:

integrate((1/a/(x^p)+(-1+1/a/(x^p))^(1/2)*(1+1/a/(x^p))^(1/2))/x,x, algori 
thm="giac")
 

Output:

integrate((sqrt(1/(a*x^p) + 1)*sqrt(1/(a*x^p) - 1) + 1/(a*x^p))/x, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=\int \frac {\sqrt {\frac {1}{a\,x^p}-1}\,\sqrt {\frac {1}{a\,x^p}+1}+\frac {1}{a\,x^p}}{x} \,d x \] Input:

int(((1/(a*x^p) - 1)^(1/2)*(1/(a*x^p) + 1)^(1/2) + 1/(a*x^p))/x,x)
 

Output:

int(((1/(a*x^p) - 1)^(1/2)*(1/(a*x^p) + 1)^(1/2) + 1/(a*x^p))/x, x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {e^{\text {sech}^{-1}\left (a x^p\right )}}{x} \, dx=\frac {x^{p} \left (\int \frac {\sqrt {x^{p} a +1}\, \sqrt {-x^{p} a +1}}{x^{p} x}d x \right ) p -1}{x^{p} a p} \] Input:

int((1/a/(x^p)+(-1+1/a/(x^p))^(1/2)*(1+1/a/(x^p))^(1/2))/x,x)
 

Output:

(x**p*int((sqrt(x**p*a + 1)*sqrt( - x**p*a + 1))/(x**p*x),x)*p - 1)/(x**p* 
a*p)