\(\int e^{\text {csch}^{-1}(a x)} x^m \, dx\) [36]

Optimal result
Mathematica [C] (verified)
Rubi [C] (verified)
Maple [F]
Fricas [F]
Sympy [B] (verification not implemented)
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 10, antiderivative size = 1 \[ \int e^{\text {csch}^{-1}(a x)} x^m \, dx=0 \] Output:

0
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 1 in optimal.

Time = 0.02 (sec) , antiderivative size = 54, normalized size of antiderivative = 54.00 \[ \int e^{\text {csch}^{-1}(a x)} x^m \, dx=\frac {x^m}{a m}+\frac {x^{1+m} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{2} (-1-m),1+\frac {1}{2} (-1-m),-\frac {1}{a^2 x^2}\right )}{1+m} \] Input:

Integrate[E^ArcCsch[a*x]*x^m,x]
 

Output:

x^m/(a*m) + (x^(1 + m)*Hypergeometric2F1[-1/2, (-1 - m)/2, 1 + (-1 - m)/2, 
 -(1/(a^2*x^2))])/(1 + m)
 

Rubi [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 1 in optimal.

Time = 0.42 (sec) , antiderivative size = 52, normalized size of antiderivative = 52.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {6890, 15, 862, 278}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^m e^{\text {csch}^{-1}(a x)} \, dx\)

\(\Big \downarrow \) 6890

\(\displaystyle \int \sqrt {1+\frac {1}{a^2 x^2}} x^mdx+\frac {\int x^{m-1}dx}{a}\)

\(\Big \downarrow \) 15

\(\displaystyle \int \sqrt {1+\frac {1}{a^2 x^2}} x^mdx+\frac {x^m}{a m}\)

\(\Big \downarrow \) 862

\(\displaystyle \frac {x^m}{a m}-\left (\frac {1}{x}\right )^m x^m \int \sqrt {1+\frac {1}{a^2 x^2}} \left (\frac {1}{x}\right )^{-m-2}d\frac {1}{x}\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {x^{m+1} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{2} (-m-1),\frac {1-m}{2},-\frac {1}{a^2 x^2}\right )}{m+1}+\frac {x^m}{a m}\)

Input:

Int[E^ArcCsch[a*x]*x^m,x]
 

Output:

x^m/(a*m) + (x^(1 + m)*Hypergeometric2F1[-1/2, (-1 - m)/2, (1 - m)/2, -(1/ 
(a^2*x^2))])/(1 + m)
 

Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 862
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-c^ 
(-1))*(c*x)^(m + 1)*(1/x)^(m + 1)   Subst[Int[(a + b/x^n)^p/x^(m + 2), x], 
x, 1/x], x] /; FreeQ[{a, b, c, m, p}, x] && ILtQ[n, 0] &&  !RationalQ[m]
 

rule 6890
Int[E^ArcCsch[(a_.)*(x_)^(p_.)]*(x_)^(m_.), x_Symbol] :> Simp[1/a   Int[x^( 
m - p), x], x] + Int[x^m*Sqrt[1 + 1/(a^2*x^(2*p))], x] /; FreeQ[{a, m, p}, 
x]
 
Maple [F]

\[\int \left (\frac {1}{a x}+\sqrt {1+\frac {1}{a^{2} x^{2}}}\right ) x^{m}d x\]

Input:

int((1/a/x+(1+1/a^2/x^2)^(1/2))*x^m,x)
 

Output:

int((1/a/x+(1+1/a^2/x^2)^(1/2))*x^m,x)
 

Fricas [F]

\[ \int e^{\text {csch}^{-1}(a x)} x^m \, dx=\int { x^{m} {\left (\sqrt {\frac {1}{a^{2} x^{2}} + 1} + \frac {1}{a x}\right )} \,d x } \] Input:

integrate((1/a/x+(1+1/a^2/x^2)^(1/2))*x^m,x, algorithm="fricas")
 

Output:

integral((a*x*x^m*sqrt((a^2*x^2 + 1)/(a^2*x^2)) + x^m)/(a*x), x)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 14 vs. \(2 (0) = 0\).

Time = 2.97 (sec) , antiderivative size = 65, normalized size of antiderivative = 65.00 \[ \int e^{\text {csch}^{-1}(a x)} x^m \, dx=- \frac {a^{m} a^{- m - 1} x^{m} \Gamma \left (- \frac {m}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {m}{2} \\ \frac {m}{2} + 1 \end {matrix}\middle | {a^{2} x^{2} e^{i \pi }} \right )}}{2 \Gamma \left (1 - \frac {m}{2}\right )} - \frac {\begin {cases} - \log {\left (x \right )} & \text {for}\: m = 0 \\- \frac {x^{m}}{m} & \text {otherwise} \end {cases}}{a} \] Input:

integrate((1/a/x+(1+1/a**2/x**2)**(1/2))*x**m,x)
 

Output:

-a**m*a**(-m - 1)*x**m*gamma(-m/2)*hyper((-1/2, m/2), (m/2 + 1,), a**2*x** 
2*exp_polar(I*pi))/(2*gamma(1 - m/2)) - Piecewise((-log(x), Eq(m, 0)), (-x 
**m/m, True))/a
 

Maxima [F]

\[ \int e^{\text {csch}^{-1}(a x)} x^m \, dx=\int { x^{m} {\left (\sqrt {\frac {1}{a^{2} x^{2}} + 1} + \frac {1}{a x}\right )} \,d x } \] Input:

integrate((1/a/x+(1+1/a^2/x^2)^(1/2))*x^m,x, algorithm="maxima")
 

Output:

integrate(sqrt(a^2*x^2 + 1)*x^m/x, x)/a + x^m/(a*m)
 

Giac [F(-2)]

Exception generated. \[ \int e^{\text {csch}^{-1}(a x)} x^m \, dx=\text {Exception raised: TypeError} \] Input:

integrate((1/a/x+(1+1/a^2/x^2)^(1/2))*x^m,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int e^{\text {csch}^{-1}(a x)} x^m \, dx=\int x^m\,\left (\sqrt {\frac {1}{a^2\,x^2}+1}+\frac {1}{a\,x}\right ) \,d x \] Input:

int(x^m*((1/(a^2*x^2) + 1)^(1/2) + 1/(a*x)),x)
 

Output:

int(x^m*((1/(a^2*x^2) + 1)^(1/2) + 1/(a*x)), x)
 

Reduce [F]

\[ \int e^{\text {csch}^{-1}(a x)} x^m \, dx=\frac {x^{m}+\left (\int \frac {x^{m} \sqrt {a^{2} x^{2}+1}}{x}d x \right ) m}{a m} \] Input:

int((1/a/x+(1+1/a^2/x^2)^(1/2))*x^m,x)
 

Output:

(x**m + int((x**m*sqrt(a**2*x**2 + 1))/x,x)*m)/(a*m)