\(\int \frac {e^{2 \text {arctanh}(a x)} (c-a^2 c x^2)^{3/2}}{x^3} \, dx\) [1114]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 121 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{3/2}}{x^3} \, dx=-\frac {a c (4-a x) \sqrt {c-a^2 c x^2}}{2 x}-\frac {\left (c-a^2 c x^2\right )^{3/2}}{2 x^2}-2 a^2 c^{3/2} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-\frac {1}{2} a^2 c^{3/2} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \] Output:

-1/2*a*c*(-a*x+4)*(-a^2*c*x^2+c)^(1/2)/x-1/2*(-a^2*c*x^2+c)^(3/2)/x^2-2*a^ 
2*c^(3/2)*arctan(a*c^(1/2)*x/(-a^2*c*x^2+c)^(1/2))-1/2*a^2*c^(3/2)*arctanh 
((-a^2*c*x^2+c)^(1/2)/c^(1/2))
 

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.07 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{3/2}}{x^3} \, dx=\frac {1}{2} c \left (\frac {\left (-1-4 a x+2 a^2 x^2\right ) \sqrt {c-a^2 c x^2}}{x^2}+4 a^2 \sqrt {c} \arctan \left (\frac {a x \sqrt {c-a^2 c x^2}}{\sqrt {c} \left (-1+a^2 x^2\right )}\right )+a^2 \sqrt {c} \log (x)-a^2 \sqrt {c} \log \left (c+\sqrt {c} \sqrt {c-a^2 c x^2}\right )\right ) \] Input:

Integrate[(E^(2*ArcTanh[a*x])*(c - a^2*c*x^2)^(3/2))/x^3,x]
 

Output:

(c*(((-1 - 4*a*x + 2*a^2*x^2)*Sqrt[c - a^2*c*x^2])/x^2 + 4*a^2*Sqrt[c]*Arc 
Tan[(a*x*Sqrt[c - a^2*c*x^2])/(Sqrt[c]*(-1 + a^2*x^2))] + a^2*Sqrt[c]*Log[ 
x] - a^2*Sqrt[c]*Log[c + Sqrt[c]*Sqrt[c - a^2*c*x^2]]))/2
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.01, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.407, Rules used = {6701, 540, 25, 27, 536, 538, 224, 216, 243, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{3/2}}{x^3} \, dx\)

\(\Big \downarrow \) 6701

\(\displaystyle c \int \frac {(a x+1)^2 \sqrt {c-a^2 c x^2}}{x^3}dx\)

\(\Big \downarrow \) 540

\(\displaystyle c \left (-\frac {\int -\frac {a c (a x+4) \sqrt {c-a^2 c x^2}}{x^2}dx}{2 c}-\frac {\left (c-a^2 c x^2\right )^{3/2}}{2 c x^2}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle c \left (\frac {\int \frac {a c (a x+4) \sqrt {c-a^2 c x^2}}{x^2}dx}{2 c}-\frac {\left (c-a^2 c x^2\right )^{3/2}}{2 c x^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle c \left (\frac {1}{2} a \int \frac {(a x+4) \sqrt {c-a^2 c x^2}}{x^2}dx-\frac {\left (c-a^2 c x^2\right )^{3/2}}{2 c x^2}\right )\)

\(\Big \downarrow \) 536

\(\displaystyle c \left (\frac {1}{2} a \left (\int \frac {a c-4 a^2 c x}{x \sqrt {c-a^2 c x^2}}dx-\frac {(4-a x) \sqrt {c-a^2 c x^2}}{x}\right )-\frac {\left (c-a^2 c x^2\right )^{3/2}}{2 c x^2}\right )\)

\(\Big \downarrow \) 538

\(\displaystyle c \left (\frac {1}{2} a \left (-4 a^2 c \int \frac {1}{\sqrt {c-a^2 c x^2}}dx+a c \int \frac {1}{x \sqrt {c-a^2 c x^2}}dx-\frac {(4-a x) \sqrt {c-a^2 c x^2}}{x}\right )-\frac {\left (c-a^2 c x^2\right )^{3/2}}{2 c x^2}\right )\)

\(\Big \downarrow \) 224

\(\displaystyle c \left (\frac {1}{2} a \left (-4 a^2 c \int \frac {1}{\frac {a^2 c x^2}{c-a^2 c x^2}+1}d\frac {x}{\sqrt {c-a^2 c x^2}}+a c \int \frac {1}{x \sqrt {c-a^2 c x^2}}dx-\frac {(4-a x) \sqrt {c-a^2 c x^2}}{x}\right )-\frac {\left (c-a^2 c x^2\right )^{3/2}}{2 c x^2}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle c \left (\frac {1}{2} a \left (a c \int \frac {1}{x \sqrt {c-a^2 c x^2}}dx-4 a \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-\frac {(4-a x) \sqrt {c-a^2 c x^2}}{x}\right )-\frac {\left (c-a^2 c x^2\right )^{3/2}}{2 c x^2}\right )\)

\(\Big \downarrow \) 243

\(\displaystyle c \left (\frac {1}{2} a \left (\frac {1}{2} a c \int \frac {1}{x^2 \sqrt {c-a^2 c x^2}}dx^2-4 a \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-\frac {(4-a x) \sqrt {c-a^2 c x^2}}{x}\right )-\frac {\left (c-a^2 c x^2\right )^{3/2}}{2 c x^2}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle c \left (\frac {1}{2} a \left (-\frac {\int \frac {1}{\frac {1}{a^2}-\frac {x^4}{a^2 c}}d\sqrt {c-a^2 c x^2}}{a}-4 a \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-\frac {(4-a x) \sqrt {c-a^2 c x^2}}{x}\right )-\frac {\left (c-a^2 c x^2\right )^{3/2}}{2 c x^2}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle c \left (\frac {1}{2} a \left (-4 a \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right )-\frac {(4-a x) \sqrt {c-a^2 c x^2}}{x}\right )-\frac {\left (c-a^2 c x^2\right )^{3/2}}{2 c x^2}\right )\)

Input:

Int[(E^(2*ArcTanh[a*x])*(c - a^2*c*x^2)^(3/2))/x^3,x]
 

Output:

c*(-1/2*(c - a^2*c*x^2)^(3/2)/(c*x^2) + (a*(-(((4 - a*x)*Sqrt[c - a^2*c*x^ 
2])/x) - 4*a*Sqrt[c]*ArcTan[(a*Sqrt[c]*x)/Sqrt[c - a^2*c*x^2]] - a*Sqrt[c] 
*ArcTanh[Sqrt[c - a^2*c*x^2]/Sqrt[c]]))/2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 536
Int[(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_))/(x_)^2, x_Symbol] :> S 
imp[(-(2*c*p - d*x))*((a + b*x^2)^p/(2*p*x)), x] + Int[(a*d + 2*b*c*p*x)*(( 
a + b*x^2)^(p - 1)/x), x] /; FreeQ[{a, b, c, d}, x] && GtQ[p, 0] && Integer 
Q[2*p]
 

rule 538
Int[((c_) + (d_.)*(x_))/((x_)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp 
[c   Int[1/(x*Sqrt[a + b*x^2]), x], x] + Simp[d   Int[1/Sqrt[a + b*x^2], x] 
, x] /; FreeQ[{a, b, c, d}, x]
 

rule 540
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol 
] :> With[{Qx = PolynomialQuotient[(c + d*x)^n, x, x], R = PolynomialRemain 
der[(c + d*x)^n, x, x]}, Simp[R*x^(m + 1)*((a + b*x^2)^(p + 1)/(a*(m + 1))) 
, x] + Simp[1/(a*(m + 1))   Int[x^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*(m + 
1)*Qx - b*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, p}, x] && IG 
tQ[n, 1] && ILtQ[m, -1] && GtQ[p, -1] && IntegerQ[2*p]
 

rule 6701
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_ 
Symbol] :> Simp[c^(n/2)   Int[x^m*(c + d*x^2)^(p - n/2)*(1 + a*x)^n, x], x] 
 /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ 
[c, 0]) && IGtQ[n/2, 0]
 
Maple [A] (verified)

Time = 0.31 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.07

method result size
risch \(-\frac {\left (2 a^{4} x^{4}-4 a^{3} x^{3}-3 a^{2} x^{2}+4 a x +1\right ) c^{2}}{2 x^{2} \sqrt {-c \left (a^{2} x^{2}-1\right )}}-\left (\frac {a^{2} \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )}{2 \sqrt {c}}+\frac {2 a^{3} \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-a^{2} c \,x^{2}+c}}\right )}{\sqrt {a^{2} c}}\right ) c^{2}\) \(130\)
default \(-\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {5}{2}}}{2 c \,x^{2}}+\frac {a^{2} \left (\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{3}+c \left (\sqrt {-a^{2} c \,x^{2}+c}-\sqrt {c}\, \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )\right )\right )}{2}+2 a \left (-\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {5}{2}}}{c x}-4 a^{2} \left (\frac {x \left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{4}+\frac {3 c \left (\frac {x \sqrt {-a^{2} c \,x^{2}+c}}{2}+\frac {c \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-a^{2} c \,x^{2}+c}}\right )}{2 \sqrt {a^{2} c}}\right )}{4}\right )\right )-2 a^{2} \left (\frac {\left (-\left (x -\frac {1}{a}\right )^{2} a^{2} c -2 \left (x -\frac {1}{a}\right ) a c \right )^{\frac {3}{2}}}{3}-a c \left (-\frac {\left (-2 \left (x -\frac {1}{a}\right ) a^{2} c -2 a c \right ) \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2} c -2 \left (x -\frac {1}{a}\right ) a c}}{4 a^{2} c}+\frac {c \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2} c -2 \left (x -\frac {1}{a}\right ) a c}}\right )}{2 \sqrt {a^{2} c}}\right )\right )\) \(338\)

Input:

int((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^3,x,method=_RETURNVERBOS 
E)
 

Output:

-1/2*(2*a^4*x^4-4*a^3*x^3-3*a^2*x^2+4*a*x+1)/x^2/(-c*(a^2*x^2-1))^(1/2)*c^ 
2-(1/2*a^2/c^(1/2)*ln((2*c+2*c^(1/2)*(-a^2*c*x^2+c)^(1/2))/x)+2*a^3/(a^2*c 
)^(1/2)*arctan((a^2*c)^(1/2)*x/(-a^2*c*x^2+c)^(1/2)))*c^2
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 255, normalized size of antiderivative = 2.11 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{3/2}}{x^3} \, dx=\left [\frac {8 \, a^{2} c^{\frac {3}{2}} x^{2} \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} a \sqrt {c} x}{a^{2} c x^{2} - c}\right ) + a^{2} c^{\frac {3}{2}} x^{2} \log \left (-\frac {a^{2} c x^{2} + 2 \, \sqrt {-a^{2} c x^{2} + c} \sqrt {c} - 2 \, c}{x^{2}}\right ) + 2 \, {\left (2 \, a^{2} c x^{2} - 4 \, a c x - c\right )} \sqrt {-a^{2} c x^{2} + c}}{4 \, x^{2}}, \frac {a^{2} \sqrt {-c} c x^{2} \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} \sqrt {-c}}{c}\right ) + 2 \, a^{2} \sqrt {-c} c x^{2} \log \left (2 \, a^{2} c x^{2} - 2 \, \sqrt {-a^{2} c x^{2} + c} a \sqrt {-c} x - c\right ) + {\left (2 \, a^{2} c x^{2} - 4 \, a c x - c\right )} \sqrt {-a^{2} c x^{2} + c}}{2 \, x^{2}}\right ] \] Input:

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^3,x, algorithm="fr 
icas")
 

Output:

[1/4*(8*a^2*c^(3/2)*x^2*arctan(sqrt(-a^2*c*x^2 + c)*a*sqrt(c)*x/(a^2*c*x^2 
 - c)) + a^2*c^(3/2)*x^2*log(-(a^2*c*x^2 + 2*sqrt(-a^2*c*x^2 + c)*sqrt(c) 
- 2*c)/x^2) + 2*(2*a^2*c*x^2 - 4*a*c*x - c)*sqrt(-a^2*c*x^2 + c))/x^2, 1/2 
*(a^2*sqrt(-c)*c*x^2*arctan(sqrt(-a^2*c*x^2 + c)*sqrt(-c)/c) + 2*a^2*sqrt( 
-c)*c*x^2*log(2*a^2*c*x^2 - 2*sqrt(-a^2*c*x^2 + c)*a*sqrt(-c)*x - c) + (2* 
a^2*c*x^2 - 4*a*c*x - c)*sqrt(-a^2*c*x^2 + c))/x^2]
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 5.10 (sec) , antiderivative size = 366, normalized size of antiderivative = 3.02 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{3/2}}{x^3} \, dx=a^{2} c \left (\begin {cases} i \sqrt {c} \sqrt {a^{2} x^{2} - 1} - \sqrt {c} \log {\left (a x \right )} + \frac {\sqrt {c} \log {\left (a^{2} x^{2} \right )}}{2} + i \sqrt {c} \operatorname {asin}{\left (\frac {1}{a x} \right )} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\\sqrt {c} \sqrt {- a^{2} x^{2} + 1} + \frac {\sqrt {c} \log {\left (a^{2} x^{2} \right )}}{2} - \sqrt {c} \log {\left (\sqrt {- a^{2} x^{2} + 1} + 1 \right )} & \text {otherwise} \end {cases}\right ) + 2 a c \left (\begin {cases} - \frac {i a^{2} \sqrt {c} x}{\sqrt {a^{2} x^{2} - 1}} + i a \sqrt {c} \operatorname {acosh}{\left (a x \right )} + \frac {i \sqrt {c}}{x \sqrt {a^{2} x^{2} - 1}} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\\frac {a^{2} \sqrt {c} x}{\sqrt {- a^{2} x^{2} + 1}} - a \sqrt {c} \operatorname {asin}{\left (a x \right )} - \frac {\sqrt {c}}{x \sqrt {- a^{2} x^{2} + 1}} & \text {otherwise} \end {cases}\right ) + c \left (\begin {cases} \frac {a^{2} \sqrt {c} \operatorname {acosh}{\left (\frac {1}{a x} \right )}}{2} + \frac {a \sqrt {c}}{2 x \sqrt {-1 + \frac {1}{a^{2} x^{2}}}} - \frac {\sqrt {c}}{2 a x^{3} \sqrt {-1 + \frac {1}{a^{2} x^{2}}}} & \text {for}\: \frac {1}{\left |{a^{2} x^{2}}\right |} > 1 \\- \frac {i a^{2} \sqrt {c} \operatorname {asin}{\left (\frac {1}{a x} \right )}}{2} - \frac {i a \sqrt {c} \sqrt {1 - \frac {1}{a^{2} x^{2}}}}{2 x} & \text {otherwise} \end {cases}\right ) \] Input:

integrate((a*x+1)**2/(-a**2*x**2+1)*(-a**2*c*x**2+c)**(3/2)/x**3,x)
 

Output:

a**2*c*Piecewise((I*sqrt(c)*sqrt(a**2*x**2 - 1) - sqrt(c)*log(a*x) + sqrt( 
c)*log(a**2*x**2)/2 + I*sqrt(c)*asin(1/(a*x)), Abs(a**2*x**2) > 1), (sqrt( 
c)*sqrt(-a**2*x**2 + 1) + sqrt(c)*log(a**2*x**2)/2 - sqrt(c)*log(sqrt(-a** 
2*x**2 + 1) + 1), True)) + 2*a*c*Piecewise((-I*a**2*sqrt(c)*x/sqrt(a**2*x* 
*2 - 1) + I*a*sqrt(c)*acosh(a*x) + I*sqrt(c)/(x*sqrt(a**2*x**2 - 1)), Abs( 
a**2*x**2) > 1), (a**2*sqrt(c)*x/sqrt(-a**2*x**2 + 1) - a*sqrt(c)*asin(a*x 
) - sqrt(c)/(x*sqrt(-a**2*x**2 + 1)), True)) + c*Piecewise((a**2*sqrt(c)*a 
cosh(1/(a*x))/2 + a*sqrt(c)/(2*x*sqrt(-1 + 1/(a**2*x**2))) - sqrt(c)/(2*a* 
x**3*sqrt(-1 + 1/(a**2*x**2))), 1/Abs(a**2*x**2) > 1), (-I*a**2*sqrt(c)*as 
in(1/(a*x))/2 - I*a*sqrt(c)*sqrt(1 - 1/(a**2*x**2))/(2*x), True))
 

Maxima [F]

\[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{3/2}}{x^3} \, dx=\int { -\frac {{\left (-a^{2} c x^{2} + c\right )}^{\frac {3}{2}} {\left (a x + 1\right )}^{2}}{{\left (a^{2} x^{2} - 1\right )} x^{3}} \,d x } \] Input:

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^3,x, algorithm="ma 
xima")
 

Output:

-integrate((-a^2*c*x^2 + c)^(3/2)*(a*x + 1)^2/((a^2*x^2 - 1)*x^3), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 274 vs. \(2 (98) = 196\).

Time = 0.15 (sec) , antiderivative size = 274, normalized size of antiderivative = 2.26 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{3/2}}{x^3} \, dx=\frac {a^{2} c^{2} \arctan \left (-\frac {\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}}{\sqrt {-c}}\right )}{\sqrt {-c}} - \frac {2 \, a^{3} \sqrt {-c} c \log \left ({\left | -\sqrt {-a^{2} c} x + \sqrt {-a^{2} c x^{2} + c} \right |}\right )}{{\left | a \right |}} + \sqrt {-a^{2} c x^{2} + c} a^{2} c - \frac {{\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{3} a^{2} c^{2} {\left | a \right |} - 4 \, {\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{2} a^{3} \sqrt {-c} c^{2} + {\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )} a^{2} c^{3} {\left | a \right |} + 4 \, a^{3} \sqrt {-c} c^{3}}{{\left ({\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{2} - c\right )}^{2} {\left | a \right |}} \] Input:

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^3,x, algorithm="gi 
ac")
                                                                                    
                                                                                    
 

Output:

a^2*c^2*arctan(-(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))/sqrt(-c))/sqrt(-c) 
 - 2*a^3*sqrt(-c)*c*log(abs(-sqrt(-a^2*c)*x + sqrt(-a^2*c*x^2 + c)))/abs(a 
) + sqrt(-a^2*c*x^2 + c)*a^2*c - ((sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^ 
3*a^2*c^2*abs(a) - 4*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^2*a^3*sqrt(-c 
)*c^2 + (sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))*a^2*c^3*abs(a) + 4*a^3*sqr 
t(-c)*c^3)/(((sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^2 - c)^2*abs(a))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{3/2}}{x^3} \, dx=-\int \frac {{\left (c-a^2\,c\,x^2\right )}^{3/2}\,{\left (a\,x+1\right )}^2}{x^3\,\left (a^2\,x^2-1\right )} \,d x \] Input:

int(-((c - a^2*c*x^2)^(3/2)*(a*x + 1)^2)/(x^3*(a^2*x^2 - 1)),x)
 

Output:

-int(((c - a^2*c*x^2)^(3/2)*(a*x + 1)^2)/(x^3*(a^2*x^2 - 1)), x)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.76 \[ \int \frac {e^{2 \text {arctanh}(a x)} \left (c-a^2 c x^2\right )^{3/2}}{x^3} \, dx=\frac {\sqrt {c}\, c \left (-16 \mathit {asin} \left (a x \right ) a^{2} x^{2}+8 \sqrt {-a^{2} x^{2}+1}\, a^{2} x^{2}-16 \sqrt {-a^{2} x^{2}+1}\, a x -4 \sqrt {-a^{2} x^{2}+1}+4 \,\mathrm {log}\left (\tan \left (\frac {\mathit {asin} \left (a x \right )}{2}\right )\right ) a^{2} x^{2}-7 a^{2} x^{2}\right )}{8 x^{2}} \] Input:

int((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^3,x)
 

Output:

(sqrt(c)*c*( - 16*asin(a*x)*a**2*x**2 + 8*sqrt( - a**2*x**2 + 1)*a**2*x**2 
 - 16*sqrt( - a**2*x**2 + 1)*a*x - 4*sqrt( - a**2*x**2 + 1) + 4*log(tan(as 
in(a*x)/2))*a**2*x**2 - 7*a**2*x**2))/(8*x**2)