\(\int e^{-\text {arctanh}(a x)} x (1-a^2 x^2)^p \, dx\) [1240]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 58 \[ \int e^{-\text {arctanh}(a x)} x \left (1-a^2 x^2\right )^p \, dx=-\frac {\left (1-a^2 x^2\right )^{\frac {1}{2}+p}}{a^2 (1+2 p)}-\frac {1}{3} a x^3 \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {1}{2}-p,\frac {5}{2},a^2 x^2\right ) \] Output:

-(-a^2*x^2+1)^(1/2+p)/a^2/(1+2*p)-1/3*a*x^3*hypergeom([3/2, 1/2-p],[5/2],a 
^2*x^2)
 

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.03 \[ \int e^{-\text {arctanh}(a x)} x \left (1-a^2 x^2\right )^p \, dx=-\frac {\left (1-a^2 x^2\right )^{\frac {1}{2}+p}}{2 a^2 \left (\frac {1}{2}+p\right )}-\frac {1}{3} a x^3 \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {1}{2}-p,\frac {5}{2},a^2 x^2\right ) \] Input:

Integrate[(x*(1 - a^2*x^2)^p)/E^ArcTanh[a*x],x]
 

Output:

-1/2*(1 - a^2*x^2)^(1/2 + p)/(a^2*(1/2 + p)) - (a*x^3*Hypergeometric2F1[3/ 
2, 1/2 - p, 5/2, a^2*x^2])/3
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {6699, 542, 241, 278}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x e^{-\text {arctanh}(a x)} \left (1-a^2 x^2\right )^p \, dx\)

\(\Big \downarrow \) 6699

\(\displaystyle \int x (1-a x) \left (1-a^2 x^2\right )^{p-\frac {1}{2}}dx\)

\(\Big \downarrow \) 542

\(\displaystyle \int x \left (1-a^2 x^2\right )^{p-\frac {1}{2}}dx-a \int x^2 \left (1-a^2 x^2\right )^{p-\frac {1}{2}}dx\)

\(\Big \downarrow \) 241

\(\displaystyle -a \int x^2 \left (1-a^2 x^2\right )^{p-\frac {1}{2}}dx-\frac {\left (1-a^2 x^2\right )^{p+\frac {1}{2}}}{a^2 (2 p+1)}\)

\(\Big \downarrow \) 278

\(\displaystyle -\frac {1}{3} a x^3 \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {1}{2}-p,\frac {5}{2},a^2 x^2\right )-\frac {\left (1-a^2 x^2\right )^{p+\frac {1}{2}}}{a^2 (2 p+1)}\)

Input:

Int[(x*(1 - a^2*x^2)^p)/E^ArcTanh[a*x],x]
 

Output:

-((1 - a^2*x^2)^(1/2 + p)/(a^2*(1 + 2*p))) - (a*x^3*Hypergeometric2F1[3/2, 
 1/2 - p, 5/2, a^2*x^2])/3
 

Defintions of rubi rules used

rule 241
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x^2)^(p + 1)/ 
(2*b*(p + 1)), x] /; FreeQ[{a, b, p}, x] && NeQ[p, -1]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 542
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 Simp[c   Int[x^m*(a + b*x^2)^p, x], x] + Simp[d   Int[x^(m + 1)*(a + b*x^2 
)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && IntegerQ[m] &&  !IntegerQ[2*p]
 

rule 6699
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_ 
Symbol] :> Simp[c^p   Int[x^m*((1 - a^2*x^2)^(p + n/2)/(1 - a*x)^n), x], x] 
 /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c 
, 0]) && ILtQ[(n - 1)/2, 0] &&  !IntegerQ[p - n/2]
 
Maple [F]

\[\int \frac {x \left (-a^{2} x^{2}+1\right )^{p} \sqrt {-a^{2} x^{2}+1}}{a x +1}d x\]

Input:

int(x*(-a^2*x^2+1)^p/(a*x+1)*(-a^2*x^2+1)^(1/2),x)
 

Output:

int(x*(-a^2*x^2+1)^p/(a*x+1)*(-a^2*x^2+1)^(1/2),x)
 

Fricas [F]

\[ \int e^{-\text {arctanh}(a x)} x \left (1-a^2 x^2\right )^p \, dx=\int { \frac {\sqrt {-a^{2} x^{2} + 1} {\left (-a^{2} x^{2} + 1\right )}^{p} x}{a x + 1} \,d x } \] Input:

integrate(x*(-a^2*x^2+1)^p/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="fricas 
")
 

Output:

integral(sqrt(-a^2*x^2 + 1)*(-a^2*x^2 + 1)^p*x/(a*x + 1), x)
 

Sympy [F]

\[ \int e^{-\text {arctanh}(a x)} x \left (1-a^2 x^2\right )^p \, dx=\int \frac {x \sqrt {- \left (a x - 1\right ) \left (a x + 1\right )} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{p}}{a x + 1}\, dx \] Input:

integrate(x*(-a**2*x**2+1)**p/(a*x+1)*(-a**2*x**2+1)**(1/2),x)
 

Output:

Integral(x*sqrt(-(a*x - 1)*(a*x + 1))*(-(a*x - 1)*(a*x + 1))**p/(a*x + 1), 
 x)
 

Maxima [F]

\[ \int e^{-\text {arctanh}(a x)} x \left (1-a^2 x^2\right )^p \, dx=\int { \frac {\sqrt {-a^{2} x^{2} + 1} {\left (-a^{2} x^{2} + 1\right )}^{p} x}{a x + 1} \,d x } \] Input:

integrate(x*(-a^2*x^2+1)^p/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="maxima 
")
 

Output:

integrate((-a^2*x^2 + 1)^(p + 1/2)*x/(a*x + 1), x)
 

Giac [F]

\[ \int e^{-\text {arctanh}(a x)} x \left (1-a^2 x^2\right )^p \, dx=\int { \frac {\sqrt {-a^{2} x^{2} + 1} {\left (-a^{2} x^{2} + 1\right )}^{p} x}{a x + 1} \,d x } \] Input:

integrate(x*(-a^2*x^2+1)^p/(a*x+1)*(-a^2*x^2+1)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(-a^2*x^2 + 1)*(-a^2*x^2 + 1)^p*x/(a*x + 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int e^{-\text {arctanh}(a x)} x \left (1-a^2 x^2\right )^p \, dx=\int \frac {x\,{\left (1-a^2\,x^2\right )}^p\,\sqrt {1-a^2\,x^2}}{a\,x+1} \,d x \] Input:

int((x*(1 - a^2*x^2)^p*(1 - a^2*x^2)^(1/2))/(a*x + 1),x)
 

Output:

int((x*(1 - a^2*x^2)^p*(1 - a^2*x^2)^(1/2))/(a*x + 1), x)
 

Reduce [F]

\[ \int e^{-\text {arctanh}(a x)} x \left (1-a^2 x^2\right )^p \, dx=\int \frac {\left (-a^{2} x^{2}+1\right )^{p +\frac {1}{2}} x}{a x +1}d x \] Input:

int(x*(-a^2*x^2+1)^p/(a*x+1)*(-a^2*x^2+1)^(1/2),x)
 

Output:

int((( - a**2*x**2 + 1)**((2*p + 1)/2)*x)/(a*x + 1),x)