\(\int e^{-3 \text {arctanh}(a x)} x^m \sqrt {c-a^2 c x^2} \, dx\) [1301]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 136 \[ \int e^{-3 \text {arctanh}(a x)} x^m \sqrt {c-a^2 c x^2} \, dx=-\frac {3 x^{1+m} \sqrt {c-a^2 c x^2}}{(1+m) \sqrt {1-a^2 x^2}}+\frac {a x^{2+m} \sqrt {c-a^2 c x^2}}{(2+m) \sqrt {1-a^2 x^2}}+\frac {4 x^{1+m} \sqrt {c-a^2 c x^2} \operatorname {Hypergeometric2F1}(1,1+m,2+m,-a x)}{(1+m) \sqrt {1-a^2 x^2}} \] Output:

-3*x^(1+m)*(-a^2*c*x^2+c)^(1/2)/(1+m)/(-a^2*x^2+1)^(1/2)+a*x^(2+m)*(-a^2*c 
*x^2+c)^(1/2)/(2+m)/(-a^2*x^2+1)^(1/2)+4*x^(1+m)*(-a^2*c*x^2+c)^(1/2)*hype 
rgeom([1, 1+m],[2+m],-a*x)/(1+m)/(-a^2*x^2+1)^(1/2)
 

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.54 \[ \int e^{-3 \text {arctanh}(a x)} x^m \sqrt {c-a^2 c x^2} \, dx=\frac {x^{1+m} \sqrt {c-a^2 c x^2} (-6+a x+m (-3+a x)+4 (2+m) \operatorname {Hypergeometric2F1}(1,1+m,2+m,-a x))}{(1+m) (2+m) \sqrt {1-a^2 x^2}} \] Input:

Integrate[(x^m*Sqrt[c - a^2*c*x^2])/E^(3*ArcTanh[a*x]),x]
 

Output:

(x^(1 + m)*Sqrt[c - a^2*c*x^2]*(-6 + a*x + m*(-3 + a*x) + 4*(2 + m)*Hyperg 
eometric2F1[1, 1 + m, 2 + m, -(a*x)]))/((1 + m)*(2 + m)*Sqrt[1 - a^2*x^2])
 

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.58, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {6703, 6700, 99, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^m e^{-3 \text {arctanh}(a x)} \sqrt {c-a^2 c x^2} \, dx\)

\(\Big \downarrow \) 6703

\(\displaystyle \frac {\sqrt {c-a^2 c x^2} \int e^{-3 \text {arctanh}(a x)} x^m \sqrt {1-a^2 x^2}dx}{\sqrt {1-a^2 x^2}}\)

\(\Big \downarrow \) 6700

\(\displaystyle \frac {\sqrt {c-a^2 c x^2} \int \frac {x^m (1-a x)^2}{a x+1}dx}{\sqrt {1-a^2 x^2}}\)

\(\Big \downarrow \) 99

\(\displaystyle \frac {\sqrt {c-a^2 c x^2} \int \left (\frac {4 x^m}{a x+1}-3 x^m+a x^{m+1}\right )dx}{\sqrt {1-a^2 x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {c-a^2 c x^2} \left (\frac {4 x^{m+1} \operatorname {Hypergeometric2F1}(1,m+1,m+2,-a x)}{m+1}+\frac {a x^{m+2}}{m+2}-\frac {3 x^{m+1}}{m+1}\right )}{\sqrt {1-a^2 x^2}}\)

Input:

Int[(x^m*Sqrt[c - a^2*c*x^2])/E^(3*ArcTanh[a*x]),x]
 

Output:

(Sqrt[c - a^2*c*x^2]*((-3*x^(1 + m))/(1 + m) + (a*x^(2 + m))/(2 + m) + (4* 
x^(1 + m)*Hypergeometric2F1[1, 1 + m, 2 + m, -(a*x)])/(1 + m)))/Sqrt[1 - a 
^2*x^2]
 

Defintions of rubi rules used

rule 99
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] && (IntegerQ[p] | 
| (GtQ[m, 0] && GeQ[n, -1]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6700
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x 
_Symbol] :> Simp[c^p   Int[x^m*(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], 
 x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || 
 GtQ[c, 0])
 

rule 6703
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_ 
Symbol] :> Simp[c^IntPart[p]*((c + d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPar 
t[p])   Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, 
d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !I 
ntegerQ[n/2]
 
Maple [F]

\[\int \frac {x^{m} \sqrt {-a^{2} c \,x^{2}+c}\, \left (-a^{2} x^{2}+1\right )^{\frac {3}{2}}}{\left (a x +1\right )^{3}}d x\]

Input:

int(x^m*(-a^2*c*x^2+c)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x)
 

Output:

int(x^m*(-a^2*c*x^2+c)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x)
 

Fricas [F]

\[ \int e^{-3 \text {arctanh}(a x)} x^m \sqrt {c-a^2 c x^2} \, dx=\int { \frac {\sqrt {-a^{2} c x^{2} + c} {\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} x^{m}}{{\left (a x + 1\right )}^{3}} \,d x } \] Input:

integrate(x^m*(-a^2*c*x^2+c)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorit 
hm="fricas")
 

Output:

integral(-sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*(a*x - 1)*x^m/(a^2*x^2 + 
 2*a*x + 1), x)
 

Sympy [F(-1)]

Timed out. \[ \int e^{-3 \text {arctanh}(a x)} x^m \sqrt {c-a^2 c x^2} \, dx=\text {Timed out} \] Input:

integrate(x**m*(-a**2*c*x**2+c)**(1/2)/(a*x+1)**3*(-a**2*x**2+1)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int e^{-3 \text {arctanh}(a x)} x^m \sqrt {c-a^2 c x^2} \, dx=\int { \frac {\sqrt {-a^{2} c x^{2} + c} {\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} x^{m}}{{\left (a x + 1\right )}^{3}} \,d x } \] Input:

integrate(x^m*(-a^2*c*x^2+c)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorit 
hm="maxima")
 

Output:

integrate(sqrt(-a^2*c*x^2 + c)*(-a^2*x^2 + 1)^(3/2)*x^m/(a*x + 1)^3, x)
 

Giac [F(-2)]

Exception generated. \[ \int e^{-3 \text {arctanh}(a x)} x^m \sqrt {c-a^2 c x^2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^m*(-a^2*c*x^2+c)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorit 
hm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int e^{-3 \text {arctanh}(a x)} x^m \sqrt {c-a^2 c x^2} \, dx=\int \frac {x^m\,\sqrt {c-a^2\,c\,x^2}\,{\left (1-a^2\,x^2\right )}^{3/2}}{{\left (a\,x+1\right )}^3} \,d x \] Input:

int((x^m*(c - a^2*c*x^2)^(1/2)*(1 - a^2*x^2)^(3/2))/(a*x + 1)^3,x)
 

Output:

int((x^m*(c - a^2*c*x^2)^(1/2)*(1 - a^2*x^2)^(3/2))/(a*x + 1)^3, x)
 

Reduce [F]

\[ \int e^{-3 \text {arctanh}(a x)} x^m \sqrt {c-a^2 c x^2} \, dx=\frac {\sqrt {c}\, \left (x^{m} a^{2} m^{2} x^{2}+x^{m} a^{2} m \,x^{2}-3 x^{m} a \,m^{2} x -6 x^{m} a m x +4 x^{m} m^{2}+12 x^{m} m +8 x^{m}-4 \left (\int \frac {x^{m}}{a \,x^{2}+x}d x \right ) m^{3}-12 \left (\int \frac {x^{m}}{a \,x^{2}+x}d x \right ) m^{2}-8 \left (\int \frac {x^{m}}{a \,x^{2}+x}d x \right ) m \right )}{a m \left (m^{2}+3 m +2\right )} \] Input:

int(x^m*(-a^2*c*x^2+c)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x)
 

Output:

(sqrt(c)*(x**m*a**2*m**2*x**2 + x**m*a**2*m*x**2 - 3*x**m*a*m**2*x - 6*x** 
m*a*m*x + 4*x**m*m**2 + 12*x**m*m + 8*x**m - 4*int(x**m/(a*x**2 + x),x)*m* 
*3 - 12*int(x**m/(a*x**2 + x),x)*m**2 - 8*int(x**m/(a*x**2 + x),x)*m))/(a* 
m*(m**2 + 3*m + 2))